Electrostatic surface cleaning

Oct 07, 2009
The equipment removes fine dust particles effectively from product surfaces -- and collects them safely. Credit: Fraunhofer IGB

It's often the little things that count in industrial manufacturing processes. Particles less than half the diameter of a hair in size can significantly impair quality in production. For example, there should be no particles larger than five micrometers on the packaging film of food and medicines, as these could contaminate the contents.

Tiny particles also cause problems in the printing industry, as they reduce the quality of the print if they remain on the surface of the paper. And fine particles on electrical components can cause operational failures. Manufacturers usually resort to a type of vacuum cleaner to remove the dust - it blows air on the contaminated surface, then sucks this in again, together with the undesired particles. However, this method does not effectively remove particles smaller than 20 micrometers, as the electrostatic force causes the majority of them to remain on the surface.

Researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart have developed a system which also removes these fine dust particles effectively from the product surfaces. Colleagues from NITO A/S in Denmark, Ziegener + Frick GmbH in Ellhofen and the Danish Innovation Institute were involved in the development process. "The system guarantees the quality of the product and improves the working environment of employees, as it reliably collects the harmful particles, preventing them from going into the air and then into the lungs of employees," says Sukhanes Laopeamthong, a researcher at the IGB.

The researchers charge the dust particles with positive ions. A negatively charged attracts the positively charged dust particles, the resulting force lifting the dust particles easily from the surface of the product. A controlled air current carries them to the dust collector. Prior to the construction of the test equipment, the researchers have already resolved a few questions using special simulation software. What electrical field strength is required to lift the dust particles? What are the required characteristics of the air current transporting the particles? The test equipment removes on average 85 percent of dust smaller than 15 micrometers and more than 95 percent of bigger than 15 micrometers. The researchers are presenting the exhibit at the Parts2Clean trade fair from 20 to 22 October in Stuttgart. The scientists expect the system to be operational in industry in approximately two years.

Source: Fraunhofer-Gesellschaft (news : web)

Explore further: Developing the next evolution in underwater communication

add to favorites email to friend print save as pdf

Related Stories

Tracing ultra-fine dust

Oct 05, 2009

Limit values for fine dust emissions are based on total particle weight. It is the ultra-fine particles, however, that are particularly harmful to health. A new technique separates them by size and identifies ...

Do laser printers emit harmful particles?

Dec 02, 2008

(PhysOrg.com) -- Researchers have investigated the possibility that laser printers emit pathogenic toner particles into the air, which has been a subject of public controversy. Some reports have suggested ...

Cosmic dust in terrestrial ice

Jul 27, 2006

For the last 30,000 years, our planet has been hit by a constant rain of cosmic dust particles. Scientists have reached this conclusion after investigating the amount of the helium isotope 3He in cosmic dust ...

Recommended for you

Student develops filter for clean water around the world

3 hours ago

Roughly 780 million people around the world have no access to clean drinking water. According to the World Health Organization (WHO), 3.4 million people die from water-related diseases every year. ETH student Jeremy Nussbaumer ...

Minimising drag to maximise results

7 hours ago

One of the most exciting parts of the Tour de France for spectators is the tactical vying for spots in the breakaway group at the front of the pack.

User comments : 0