Team finds a better way to watch bacteria swim

Oct 04, 2009
(Left to right) University of Illinois physics professor Yann Chemla, graduate student Patrick Mears, physics professor Ido Golding and graduate student Lance Min developed a technique that allows researchers to watch bacteria swim normally. Credit: Photo by Lok-hang So, University of Illinois.

Researchers have developed a new method for studying bacterial swimming, one that allows them to trap Escherichia coli bacteria and modify the microbes' environment without hindering the way they move.

The new approach, described this month in , uses optical traps, microfluidic chambers and fluorescence to get an improved picture of how E. coli get around.

The microfluidic chambers provide a controlled environment in which the bacteria swim, and allow the researchers to introduce specific stimuli - such as chemical attractants - to see if the change direction in response to that stimulus.

Optical traps use lasers to confine individual cells without impeding their rotation or the movement of their flagella. University of Illinois physics professor Yann Chemla, who co-led the study with physics professor Ido Golding, calls the optical traps "bacterial treadmills."

Movement of the bacterial cell alters the light from the laser, allowing the researchers to track its behavior.

Fluorescent markers enhance visualization of the bacteria and their flagella under a microscope.

Three to six helical flagella emerge from various points along E. coli's rod-shaped body. When they rotate in a counterclockwise fashion (as seen from behind), they gather into what looks like a coordinated bundle that pushes the forward, causing it to corkscrew through its environment. But when one or more flagella rotate in the opposite direction, they splay apart, reorienting the bacterium.

This "run and tumble" behavior has long been of interest to scientists for two reasons, Golding said. First, the elaborate mechanics of bacterial swimming "tell you a lot about biomechanics," he said. And second, "it serves as a paradigm for the way living cells process information from their environment."

Earlier studies have been unable to follow individual moving in three dimensions for more than about 30 seconds, the researchers said. And it is nearly impossible to determine what cues are spurring a cell to move in a given direction. The new method addresses both of these problems without altering the normal behavior of the bacterium, they found.

"Because the cell is immobilized, what we do is change the environment around it," Chemla said. "We can set up a flow cell that has two different concentrations of some chemical, for example, and see how the bacterium responds. Technically we're moving the swimming pool relative to the swimmer," he said.

The new approach allows the researchers to track a single bacterium as it swims for up to an hour, "which is orders of magnitude above what people could do before," Golding said. This will offer a new look at questions that so far have been unanswerable, he said.

"For example, some people have asked whether E. coli has a nose. Does it have a front and back?" Golding said. The team's observations indicate that while the bacterium can travel in either direction, most E. coli have "a pronounced preference" for one over the other, he said.

The researchers found that after most tumbles, a bacterium usually continued swimming in the same general direction, but that about one in six tumbles caused it to change direction completely. They were also able to quantify other features of bacterial swimming, such as changes in velocity and the time spent running and tumbling. The new technique will allow researchers to address many more questions about this model organism, they said.

"That's the typical way biology moves forward," Golding said. "You develop a new measurement capability and then you can use that to go back and look at fundamental questions that people had been looking at but had no way of answering."

Source: University of Illinois at Urbana-Champaign (news : web)

Explore further: Researchers successfully clone adult human stem cells

add to favorites email to friend print save as pdf

Related Stories

Bacteria Take the Path of Least Resistance

Jul 01, 2005

Findings may lead to new nano-devices and understanding of infection Researchers have reported new information about how certain bacteria propel themselves from one place to another. Insight into bacteria ...

Mixing it up with E. coli

Jan 15, 2007

Poetry in motion may seem like an odd way to describe swimming bacteria, but that's what researchers at Drexel University got when they enlisted Escherichia coli (E. coli) in an effort to tackle a major problem in developing ...

New paper sheds light on bacterial cell wall recycling

Sep 08, 2008

A new paper by a team of researchers led by Shahriar Mobashery, Navari Family Professor of Life Sciences at the University of Notre Dame, provides important new insights into the process by which bacteria recycle their cell ...

How do bacteria swim? Physicists explain

Nov 19, 2008

Imagine yourself swimming in a pool: It's the movement of your arms and legs, not the viscosity of the water, that mostly dictates the speed and direction that you swim.

Recommended for you

Researchers successfully clone adult human stem cells

6 hours ago

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

9 hours ago

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

For resetting circadian rhythms, neural cooperation is key

Apr 17, 2014

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Plants with dormant seeds give rise to more species

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...