Improved robotic hand captures mechanical engineering top award

Sep 28, 2009
The Virginia Tech College of Engineering's Robotics and Mechanisms Laboratory created an improved fully articulated robotic hand. RAPHaEL 2 can firmly hold objects ranging from a soup can to a raw egg. It uses force and position feedback to automatically control the grasping force and finger position. Credit: Virginia Tech Photo

The Virginia Tech College of Engineering's Robotics and Mechanisms Laboratory (RoMeLa) has captured another top award for its updated innovative robotic hand that can automatically change its grasping force using compressed air.

A team of five undergraduate students won First Place in the American Society of Mechanical Engineers (ASME) Student Mechanism and Robot Design Competition at the International Design Engineering Technical Conference. The winning entry was RAPHaEL 2, a second-generation version of a robotic hand that previously won an award from the Compressed Air and Gas Institute.

Held in San Diego, the ASME competition included undergraduate and graduate school teams. RoMeLa bested graduate student teams from MIT and the University of California Berkeley, and an undergraduate team from Purdue University, said Dennis Hong, director of RoMeLa and an associate professor with the Virginia Tech department.

The RAPHaEL (Robotic Air Powered Hand with Elastic Ligaments) series robotic hand is powered by compressed air and a novel accordion type tube actuator. Because the hand's grasping force and compliance is adjusted by changing the air pressure, it does not require the use of motors or other expensive and bulky actuators, Hong said.

The most significant change for RAPHaEL 2 is the closed loop control mechanism and sensors for automatic position and force feedback of the fingers using LabVIEW and data acquisition hardware donated by National Instruments. The first version of RAPHaEL relied on solenoids with a microcontroller to operate. The material that comprises the hand also were changed to a durable polycarbonate material, replacing a fragile acrylic-based material that was prone to breakage, said Cothern.

"This gives us a lot more control over the kinds of things we can do with the hand," said Cothern. "Eventually, we might be able to tell how soft an object you're grabbing is just by touching it."

Additional tweaks to come: The ability to grasp small moving objects as well as the use of silicone, carbon fiber and other materials to make the hand lighter, simpler in structure, and also appear more human. As a possible prosthetic, the hand is easy to operate and its fingers are easy to replace if broken, Cothern said.

RAPHaEL 2 is part of a larger RoMeLa project: The humanoid robot CHARLI (Cognitive Humanoid Robot with Learning Intelligence). Once the hand is connected to the larger body, it will be able to pick up - not just grasp and hold - objects as would a person, said Hong. CHARLI is expected one day to walk about campus giving tours of Virginia Tech to visitors and potential students.

More information: Learn more about RoMeLa: www.me.vt.edu/romela/

Source: Virginia Tech (news : web)

Explore further: Researchers propose network-based evaluation tool to assess relief operations feasibility

add to favorites email to friend print save as pdf

Related Stories

Researcher to create robotic locomotion that mimics amoeba

Mar 19, 2007

Creating a robotic locomotion mechanism based on the motion of single-cell organisms is the goal of Virginia Tech College of Engineering researcher Dennis Hong, who has received a National Science Foundation Faculty Early ...

Robots compete this week at Purdue

Mar 13, 2006

Purdue University says it will host a group of college and high school students this week in a competition of robotic inventions.

Scientists develop 'clever' artificial hand

Sep 07, 2005

Scientists have developed a new ultra-light limb that can mimic the movement in a real hand better than any currently available. This research was presented today at the Institute of Physics conference Sensors and their Applications ...

As robots learn to imitate

Dec 22, 2004

Can robots learn to communicate by studying and imitating humans' gestures? That's what MIRROR's researchers aimed to find out by studying how infants and monkeys learn complex acts such as grasping and transferring it to ...

Recommended for you

Large streams of data warn cars, banks and oil drillers

4 hours ago

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 0

More news stories

Quantenna promises 10-gigabit Wi-Fi by next year

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...

Unlocking secrets of new solar material

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

New US-Spanish firm says targets rich mobile ad market

Spanish telecoms firm Telefonica and US investment giant Blackstone launched a mobile telephone advertising venture on Wednesday, challenging internet giants such as Google and Facebook in a multi-billion-dollar ...

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...