Computation helps predict heat transfer in diamond

Sep 22, 2009 By Anne Ju

(PhysOrg.com) -- Cornell researcher Derek Stewart and collaborators have calculated the exact mechanism by which diamond conducts heat, a breakthrough that could lend insight into many fields, including electronics.

Using computational modeling, Cornell researcher Derek Stewart and collaborators have calculated the exact mechanism by which diamond conducts heat, a breakthrough that could lend insight into fields ranging from heat management in electronics to heat flow in the earth.

The research is described in the Sept. 16 online edition of Physical Review B (Vol. 80, Issue 12) and is highlighted by the journal as an "Editor's Suggestion" for its "particular interest, clarity or importance." Stewart, the computational research associate at Cornell NanoScale Science and Technology Facility (CNF), performed the work with researchers at Boston College and the University of Regensburg, Germany.

Thermal conductivity is the measure of how easily a material transfers heat. Diamond, which is also an electrical , has a high -- about five times that of copper. In insulators, heat is carried by vibrations of atoms in the crystal, called phonons.

Using powerful computing tools at CNF and Boston College, Stewart and his collaborators calculated the interactions between the diamond's phonons and how they scatter off of each other.

By doing so, they precisely solved the scattering term of the long-used Boltzmann Transport Equation, developed by Rudolf Peierls, which scientists had been forced to approximate for 80 years to get a best estimate for exactly how phonons travel across materials. The equation describes how phonons carry heat from hot to cold regions through diffusion, and how the scattering of phonons impedes heat flow.

One of the research team's key breakthroughs, Stewart said, is that they calculated these million or more phonon-phonon interactions directly from first principles, without any experimental data.

"This makes the approach truly predictive," he said.

This ability to "see" how phonons interact in diamond and how this affects could be applied to other materials and thus provide insights into what materials might be best for applications in such areas as thermoelectrics.

"If we can do a good job modeling the thermal properties of these materials that people have studied, it puts us in a strong position to look at new candidate structures no one has considered before," Stewart said. "It can also give us ideas of how to manipulate materials on the nanoscale to change their thermal properties."

The researchers have already done similar calculations on traditional semiconductor materials, silicon and germanium.

Study co-authors are Professor David A. Broido and graduate student Alistair Ward of Boston College, and Gernot Deinzer of the University of Regensburg. The National Science Foundation funded the study.

Provided by Cornell University (news : web)

Explore further: Technique simplifies the creation of high-tech crystals

add to favorites email to friend print save as pdf

Related Stories

For Better Nanowires, Just Add Diamond

Nov 15, 2006

Among the positive characteristics of diamond, such as its beauty and unsurpassed hardness, are less well known properties that make it a valuable material in the electronics industry. Now, according to two scientists at ...

Nanotech: Hot Technology Gets a Cool Down

Jun 03, 2008

It’s the hottest technology – featherweight laptops that feature rapid response, crisp graphics and operate complex computer games; slim cell phones with Web-browsing capabilities, store high resolution photos and keep ...

Experimental Observation of 'Digital' Heat Flow

Oct 26, 2005

The first observation of "digital" or quantized heat flow in a nanostructure at ambient conditions has been made by Caltech researchers using carbon nanotubes suspended between two electrodes.

Recommended for you

'Comb on a chip' powers new atomic clock design

12 hours ago

Researchers from the National Institute of Standards and Technology (NIST) and California Institute of Technology (Caltech) have demonstrated a new design for an atomic clock that is based on a chip-scale ...

Quantum leap in lasers brightens future for quantum computing

12 hours ago

Dartmouth scientists and their colleagues have devised a breakthrough laser that uses a single artificial atom to generate and emit particles of light. The laser may play a crucial role in the development of quantum computers, ...

Technique simplifies the creation of high-tech crystals

12 hours ago

Highly purified crystals that split light with uncanny precision are key parts of high-powered lenses, specialized optics and, potentially, computers that manipulate light instead of electricity. But producing ...

A new multi-bit 'spin' for MRAM storage

14 hours ago

Interest in magnetic random access memory (MRAM) is escalating, thanks to demand for fast, low-cost, nonvolatile, low-consumption, secure memory devices. MRAM, which relies on manipulating the magnetization ...

User comments : 0