New AFOSR magnetron may help defeat enemy electronics

Sep 16, 2009
Researchers funded by the US Air Force Office of Scientific Research at the University of Michigan invented a new type of magnetron that may be used to defeat enemy electronics. A magnetron is a type of vacuum tube used as the frequency source in microwave ovens, radar systems and other high-power microwave circuits. Credit: Photo courtesy of the University of Michigan and the Air Force Research Laboratory

Researchers funded by the Air Force Office of Scientific Research at the University of Michigan invented a new type of magnetron that may be used to defeat enemy electronics. A magnetron is type of vacuum tube used as the frequency source in microwave ovens, radar systems and other high-power microwave circuits.

According to Dr. Ron Gilgenbach, an AFOSR-sponsored researcher at the University of Michigan, a new class of magnetrons was invented that holds the potential for more compact Department of Defense microwave sources with faster start-up, as well as higher peak and average power.

"This invention should make it possible to develop more compact magnetrons that operate at higher power and higher frequencies," said Gilgenbach. "Higher power magnetrons could be utilized to jam and defeat enemy electronics."

The magnetron has been vital to military radar systems since . Over time the basic design of the magnetron has not changed much. However, the University of Michigan researchers have revolutionized the design of both conventional and inverted magnetrons by expanding the cathode (negatively charged electrode) and anode (positively charged electrode) area into a new type of magnetron, which permits higher current and larger area for heat dissipation in a more compact device.

This research has a significant impact on the Air Force's radar capabilities. The newly invented magnetron's higher frequencies have the potential to improve radar resolution. Additionally, the more compact packaging of the new magnetron could encourage airborne applications.

"This invention exploits some plasma physics principles that have been applied to this problem as well as an innovative, new geometry to overcome the physical limitations of conventional magnetrons," said Gilgenbach. "The vision is to explore both a high power version of the magnetron invention and a separate higher (mm wave) embodiment."

AFOSR has been funding the research that led to this invention under the program direction of Dr. Robert Barker, Physics and Electronics program manager. Dr. Barker speaks highly of the University of Michigan-led team, which includes co-inventors: R.M. Gilgenbach (UM), Y.Y. Lau (UM), Brad Hoff (formerly UM, currently at AFRL), David French (UM), and John Luginsland (NumerEx).

"The Michigan group led by Profs. Gilgenbach and Lau has long been a mainstay of AFOSR's high power microwave (HPM) research team," said Barker. "Not only is it internationally recognized for its scientific accomplishments as exemplified by this new invention, but this Michigan group also serves as an example for the rest of the university community. It has established active collaborations with AFRL counterparts and provided a steady stream of graduates to staff the ranks of the Air Force's HPM research and development establishment."

Source: Air Force Office of Scientific Research

Explore further: Students design 'nested' dumpster to slash shipping costs

add to favorites email to friend print save as pdf

Related Stories

Tegal Awarded Key Patent For New Magnetron Sputter Source

Dec 20, 2004

New sputter source represents break through in target efficiency - provides significant cost savings to chip manufacturers Tegal Corporation announced that it has been granted United States Patent, No. 6,783,638 for the ...

Cloud radar -- predicting the weather more accurately

Sep 24, 2008

The weather. It's the one topic of conversation that unites Britain – umbrella or sun cream? Now scientists at the Science and Technology Facilities Council have developed a system that measures the individual layers ...

Small, low-noise oscillator may help in surveillance

Sep 16, 2006

A new design for a microwave oscillator that is smaller, simpler, and produces clearer signals at a single frequency than comparable devices has been invented at the National Institute of Standards and Technology (NIST). ...

Recommended for you

Finnish inventor rethinks design of the axe

4 hours ago

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Lifting the brakes on fuel efficiency

Apr 18, 2014

The work of a research leader at Michigan Technological University is attracting attention from Michigan's Governor as well as automotive companies around the world. Xiaodi "Scott" Huang of Michigan Tech's ...

User comments : 0

More news stories

TCS, Mitsubishi to create new Japan IT services firm

India's biggest outsourcing firm Tata Consultancy Services (TCS) and Japan's Mitsubishi Corp said Monday they are teaming up to create a Japanese software services provider with annual revenues of $600 million.

Finnish inventor rethinks design of the axe

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...

Atom probe assisted dating of oldest piece of earth

(Phys.org) —It's a scientific axiom: big claims require extra-solid evidence. So there were skeptics in 2001 when University of Wisconsin-Madison geoscience professor John Valley dated an ancient crystal ...