Chemical Additive Could Make Old Antibiotics Viable Against Antibiotic-Resistant Bugs

Sep 10, 2009

( -- A Texas Tech researcher said a recently patented chemical additive could break down the shield of certain types of antibiotic-resistant bacteria.

The solution: A short chain of nucleic acid, called an aptamer, can effectively stop antibiotic-resistant bacteria from breaking down , said Robert W. Shaw, associate chairman of the Department of Chemistry and Biochemistry.

His results were published online in a special edition of Chemical Biology and Drug Design (Wiley-Blackwell) covering the best presentations of the 2008 International Symposium on Organic Synthesis and Drug Discovery.

Shaw said the discovery could turn back the clock for many existing antibiotics that are losing their effectiveness due to the emergence of antibiotic-resistant bacterial strains.

These beta-lactam antibiotics, such as penicillins, carbapenems and cephalosporins, account for about $30 billion in annual sales in the U.S. and much more worldwide. Therefore, antibiotic-resistant bacteria present a major problem to the medical and pharmaceutical industries.

Aptamers are not new, Shaw said. However, the aptamers Texas Tech researchers discovered, used in conjunction with antibiotics, are effective in killing bacteria that produce enzymes called metallo-beta-lactamase. These bacterial enzymes allow the bacteria to survive exposure to antibiotics.

The metallo-beta-lactamase enzymes have been the hardest enzymes for researchers to counteract, he said, in part because they can lead to the inactivation of so many antibiotics. But the new aptamers that Shaw and other researchers have created can bind to the and render it harmless to the of antibiotics.

“Bacteria become antibiotic-resistant when they exchange genetic information on how to make these enzymes,” Shaw said. “With overuse and misuse, these antibiotics have become less effective during the past 60 years or so. This happens when a bacterium that has survives a dose of antibiotics, then shares genetic information on how to become antibiotic-resistant with other bacteria during reproduction.”

Over time, natural selection makes the antibiotic-resistant the dominant strain, and different antibiotics must be used to treat infection, he said.

“We’re continuing our work, and we’re doing some pre-clinical trials here,” Shaw said.

Last year, The United States Patent Office issued patent No. 7456274 and titled “Inhibition of Metallo-ß-lactamase” to Shaw and Sung-Kun Kim, an assistant professor in the Department of Chemistry & Biochemistry at Baylor University.

Provided by Texas Tech University

Explore further: Chemical biologists find new halogenation enzyme

add to favorites email to friend print save as pdf

Related Stories

Nanotechnology used to probe effectiveness of antibiotics

Feb 04, 2009

A group of researchers led by scientists from the London Centre for Nanotechnology, in collaboration with a University of Queensland researcher, have discovered a way of using tiny nano-probes to help understand how an antibiotic ...

Bacteria build walls to withstand antibiotics

Nov 01, 2005

Antibiotic resistant bacteria, which are proliferating in hospitals and causing major headaches for physicians, cheat death by finding ways to fortify their cell walls against the deadly drugs. The question is: how? New res ...

Old antibiotic is finally synthesized

Nov 27, 2006

The need for new antibiotics to combat multi-drug resistant bacteria has led U.S. chemists to the first synthesis of a potentially valuable antibiotic.

Resistant gut bacteria will not go away by themselves

Jun 19, 2007

E. coli bacteria that have developed resistance to antibiotics will probably still be around even if we stop using antibiotics, as these strains have the same good chance as other bacteria of continuing to colonise the gut, ...

The structure of resistance

Feb 22, 2008

A team of scientists from the University Paris Descartes has solved the structure of two proteins that allow bacteria to gain resistance to multiple types of antibiotics, according to a report in EMBO reports this month. ...

Recommended for you

Chemical biologists find new halogenation enzyme

11 hours ago

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

16 hours ago

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

16 hours ago

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

18 hours ago

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

Conjecture on the lateral growth of Type I collagen fibrils

Sep 12, 2014

Whatever the origin and condition of extraction of type I collagen fibrils, in vitro as well as in vivo, the radii of their circular circular cross sections stay distributed in a range going from 50 to 100 nm for the most ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Sep 10, 2009
If it works, that's an amazing discovery.
Sep 10, 2009
This comment has been removed by a moderator.
not rated yet Sep 26, 2009
In effect, providing antibodies to the enzyme ? Neat !!