Shining a light on disease -- tracking light-emitting bacteria during infection

Sep 09, 2009

By attaching light-emitting genes to infectious bacteria in an experimental system, researchers at University College, Cork, Ireland, have been able to track where in the body the bacteria go - giving an insight into the path of the infection process leading to the development of more targeted treatments.

At the Society for General Microbiology's meeting at Heriot-Watt University, Edinburgh, Dr Cormac Gahan described how his research team had manipulated the infectious food-borne pathogen Listeria monocytogenes to emit enough light for an ultra-sensitive camera system to detect these during of living mice in real time. This non-invasive procedure allowed individual animals to be analysed over the course of a lengthy infection and therefore reduced the numbers of animals required for infection studies.

This technology showed the researchers that Listeria bacteria migrated to the kidneys and gall bladders of normal mice during infection. In mice with cancer, the bacterium migrated very efficiently to the tumour tissue. The team went on to investigate the possibility that Listeria could be used to kill tumour cells by delivering DNA containing the codes for proteins to kill the tumour.

"Bioluminescence imaging in bacterial infections has great potential to provide information on the cause of infectious diseases," said Dr Gahan, "The technology allows the researcher to pinpoint exactly where in the body the bacteria reside during infection. We have also demonstrated that the technology can indicate which bacterial genes are switched on during infection. The use of this approach will underpin the development and testing of new vaccine and DNA-delivery vectors for protection against bacterial diseases."

Source: Society for General Microbiology

Explore further: Fungus deadly to AIDS patients found to grow on trees

add to favorites email to friend print save as pdf

Related Stories

How probiotics can prevent disease

Apr 02, 2009

Using probiotics successfully against a number of animal diseases has helped scientists from University College Cork, Ireland to understand some of the ways in which they work, which could lead to them using probiotics to ...

Mimic molecules to protect against plague

Jul 04, 2008

Bacteria that cause pneumonic plague can evade our first-line defences, making it difficult for the body to fight infection. In fact, a signature of the plague is the lack of an inflammatory response. Now, scientists have ...

Recommended for you

How plant cell compartments change with cell growth

18 hours ago

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

18 hours ago

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

19 hours ago

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

19 hours ago

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0