Better Way to Measure Particle Shape Proves Popular

Sep 08, 2009
Better Way to Measure Particle Shape Proves Popular
A paper on SPLAT II is the second most cited in Aerosol Science and Technology.

Tiny particles are pivotal to climate change, public health, and nanotechnology. A significant fraction of these particles are aspherical, yet scientists must routinely assume the particles are spherical to interpret many measurements of particle properties. To determine the true shape of particles, experts at Pacific Northwest National Laboratory and Imre Consulting devised SPLAT II, a single particle mass spectrometer that provides extremely precise particle measurements.

The 2006 paper on SPLAT II is the second most cited in Aerosol Science and Technology, the 4th ranked journal in mechanical engineering and the official journal of the American Association for Aerosol Research.

Particle properties and behavior are tightly linked to their shape. For example, how much light a particle scatters, in what spatial distribution, and polarization is closely related to particle shape. Before these measurements it was assumed that the shape of particles of different types is size independent. Measurements from the SPLAT II showed that the dynamic shape factor of ammonium sulfate and particles increase with particle size.

SPLAT II provides measurements of particles with unprecedented sensitivity and precision. By combining SPLAT II with another instrument, scientists can simultaneously measure various properties about each particle, including vacuum aerodynamic diameter, mobility diameter, dynamic shape factor, and effective density.

Scientists regularly use SPLAT II to learn more about particles. For example, the instrument was part of a massive field campaign in northern Alaska aimed to improve our understanding of the relationship between particle size and composition and their ability to form warm and ice clouds.

SPLAT II is on its way to another field campaign to quantify the properties of exhaust particles in a joint project with General Motors and the University of Wisconsin.

More information: Zelenyuk A, Y Cai, and D Imre. 2006. "From agglomerates of spheres to irregularly shaped particles: Determination of dynamic shape factors from measurements of mobility and vacuum aerodynamic diameters." Aerosol Science and Technology 40(3):197-217.

Provided by Pacific Northwest National Laboratory (news : web)

Explore further: Neutron tomography technique reveals phase fractions of crystalline materials in 3-dimensions

add to favorites email to friend print save as pdf

Related Stories

Size Matters: From Aerosol Particles to Cloud Droplets

Jun 02, 2006

Clouds play a central role in the Earth’s climate system and water cycle. A cloud’s behavior depends to a great extent on the number and size of the droplets it is made of. Since each of these droplets ...

Better track leads to new particles

Dec 07, 2006

In particle accelerators new particles often arise as a result of collisions between elementary particles. However the track left by these particles is often difficult to trace. Dutch researcher Thijs Cornelissen ...

New particles get a mass boost

Oct 01, 2007

A sophisticated, new analysis has revealed that the next frontier in particle physics is farther away than once thought. New forms of matter not predicted by the Standard Model of particle physics are most likely twice as ...

Recommended for you

Refocusing research into high-temperature superconductors

8 hours ago

Below a specific transition temperature superconductors transmit electrical current nearly loss-free. For the best of the so-called high-temperature superconductors, this temperature lies around -180 °C – a temperature ...

MRI for a quantum simulation

14 hours ago

Magnetic resonance imaging (MRI), which is the medical application of nuclear magnetic resonance spectroscopy, is a powerful diagnostic tool. MRI works by resonantly exciting hydrogen atoms and measuring ...

50-foot-wide Muon g-2 electromagnet installed at Fermilab

14 hours ago

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, ...

User comments : 0