Scientists say climate change mitigation strategies ignore carbon cycling processes of inland waters

Sep 01, 2009

In the paper, The Boundless Carbon Cycle, published in the September issue of Nature Geoscience, scientists from the University of Vienna, Uppsala University in Sweden, University of Antwerp, and the U.S. based Stroud Water Research Center argue that current international strategies to mitigate manmade carbon emissions and address climate change have overlooked a critical player - inland waters.

Streams, rivers, lakes, reservoirs, and wetlands play an important role in the that is unaccounted for in conventional cycling models. The commentary comes just months before COP15, the December 2009 UN Climate Change Conference in Copenhagen where representatives from 192 countries will gather to decide upon a 2012 climate agreement that will succeed the "Kyoto protocol."

Dr. Tom J. Battin of the department of Freshwater Ecology at the University of Vienna and lead author of the paper states that "While inland waters represent only 1% of the Earth's surface, their contribution to the carbon cycle is disproportionately large, underestimated, and not recognized within the models on which the was based."

The team of scientists points out that all current global carbon models consider inland waters static conduits that transfer carbon from the continents to the oceans. In reality, inland waters are dynamic ecosystems with the potential to alter the fates of terrestrial carbon delivered to them including: burial in sediments leading to long-term storage or sequestration; and metabolism in rivers and subsequent outgassing of respired carbon dioxide to the atmosphere.

"Twenty percent of the continental actually occurs as burial in inland water sediments," said Dr. Lars Tranvik, Professor of Limnology at Uppsala University in Sweden.

"River outgassing of respired carbon, contributes carbon to the atmosphere in an amount equivalent to 13% of annual fossil fuel burning," said Dr. Anthony K. Aufdenkampe, a scientist at the Stroud Water Research Center. Because the amount of atmospheric carbon is well known and conservation of matter requires a balanced global carbon budget, this previously unaccounted for source of carbon to the atmosphere implies the existence of an additional continental carbon sink such as higher rates of biomass accrual in forests. "A larger accumulation of carbon in forest ecosystems that could offset the outgassing from rivers would be more consistent with current independently-derived estimates of carbon sequestration on the continents," said Dr. Sebastian Luyssaert of the department of Biology at University of Antwerp in Belgium.

The authors feel that a Boundless Carbon Cycle - that accounts for carbon transfers between the land-freshwater boundary, the freshwater-atmosphere boundary, and regional boundaries within continents - presents opportunities and challenges for scientists and policy makers alike. They stress the need for collaborative scientific investigations augmented by new observatories and experimental platforms for long-term research to improve insights into carbon cycles across terrestrial and aquatic . For policy makers, the authors note that riverine transport presents a book keeping challenge as carbon in rivers that escapes burial or outgassing flows downstream, traversing geographic regions and political boundaries, and thus altering regionally based carbon accounts.

Source: Stroud Water Research Center

Explore further: Climate researchers measure the concentration of greenhouse gases above the Atlantic

add to favorites email to friend print save as pdf

Related Stories

Rivers are carbon processors, not inert pipelines

Dec 01, 2008

Microorganisms in rivers and streams play a crucial role in the global carbon cycle that has not previously been considered. Freshwater ecologist Dr. Tom Battin, of the University of Vienna, told a COST ESF Frontiers of Science ...

Studying rivers for clues to global carbon cycle

Feb 08, 2008

In the science world, in the media, and recently, in our daily lives, the debate continues over how carbon in the atmosphere is affecting global climate change. Studying just how carbon cycles throughout the Earth is an enormous ...

Emissions irrelevant to future climate change?

Apr 28, 2008

Climate change and the carbon emissions seem inextricably linked. However, new research published in BioMed Central’s open access journal Carbon Balance and Management suggests that this may not always hold true, althou ...

Recommended for you

NASA image: Volcanoes in Guatemala

45 minutes ago

This photo of volcanoes in Guatemala was taken from NASA's C-20A aircraft during a four-week Earth science radar imaging mission deployment over Central and South America. The conical volcano in the center ...

NASA sees last vestiges of Tropical Depression Jack

18 hours ago

Tropical Cyclone Jack had weakened to a tropical depression when NASA and JAXA's Tropical Rainfall Measuring Mission (TRMM) satellite passed above on April 22, 2014 at 1120 UTC/7:20 a.m. EDT.

New discovery helps solve mystery source of African lava

21 hours ago

Floods of molten lava may sound like the stuff of apocalyptic theorists, but history is littered with evidence of such past events where vast lava outpourings originating deep in the Earth accompany the breakup ...

User comments : 0

More news stories

NASA image: Volcanoes in Guatemala

This photo of volcanoes in Guatemala was taken from NASA's C-20A aircraft during a four-week Earth science radar imaging mission deployment over Central and South America. The conical volcano in the center ...

On global warming, settled science and George Brandis

The Australian Attorney General, Senator George Brandis is no stranger to controversy. His statement in parliament that "people do have a right to be bigots" rapidly gained him notoriety, and it isn't hard to understand why ...

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

Imaging turns a corner

(Phys.org) —Scientists have developed a new microscope which enables a dramatically improved view of biological cells.