Novel polymer could improve protein-based drugs

Aug 19, 2009

A new method for attaching a large protective polymer molecule to a protein appears to improve protein drugs significantly.

Bioengineers at Duke University developed the new approach and demonstrated in an that the newly created protein-polymer combinations, known as conjugates, remained in circulation significantly longer than an unprotected protein.

The scientists say they are encouraged that their findings represent a new strategy to improve the efficacy of protein drugs.

Protein-based drugs are an increasingly important new class of drugs, said Ashutosh Chilkoti, Theo Pilkington Professor of Biomedical Engineering at Duke's Pratt School of Engineering. He cited such examples as for the treatment of diabetes and more exotic "magic bullet" antibodies like that are used to treat certain cancers.

Unmodified proteins that are injected into the blood are quickly recognized by the body and broken down or cleared by the body's defense system, which limits their effectiveness as drugs. To get around this problem, drug makers have been attaching another molecule, a polymer known as polyethyleneglycol (PEG), to the protein in order to protect it. But this approach has its own drawbacks.

"The current method of combining the two molecules often only works with 10 to 20 percent efficiency, so that a lot of the very expensive starting materials are wasted," said Chilkoti, who had the results of his team's experiments published this week online in the . "Additionally, the two large molecules are attached by a small chemical link and often these linkages can occur at many different sites on the protein, so the final product is poorly defined."

Chilkoti took a different approach. Instead of combining two large molecules, he grew the polymer out from the protein itself, increasing the efficiency of the protein by more than 70 percent and greatly extending the amount of time it remained active in a living model.

"We also addressed the problem of getting a pure and well-defined product by growing the polymer from a single, unique site on the protein," he said. "Another twist to our work is that instead of using PEG, we used a somewhat different polymer that turns out to be as good and perhaps even better than PEG in extending circulation of the protein in the body."

There are many protein-polymer based medications in use today, such as human growth hormones, drugs to stimulate blood cell formation in cancer patients and anti-viral agents. Chilkoti will be reviewing existing protein-polymer drugs to determine if the new technique can improve their effectiveness.

In their experiments, the researchers used myoglobin, a protein responsible for creating the red pigments that give meat its color. Instead of creating a chemical bond between myoglobin and the polymer, the Duke researchers chose a specific spot on the protein, known as the N-terminus, and then grew the polymer from that specific location. Every protein has an N-terminus, so this method should be broadly useful, Chilkoti said.

After demonstrating they could create a stable compound using the new method, the researchers tested how well it worked by comparing its actions to the conventional compound in mice.

"The conventional compound - myoglobin - had a half-life of three minutes and was totally eliminated by two hours," Chilkoti explained. "By contrast, the new compound had a half-life 40 times greater and remained in circulation for 18 hours. The longer a protein remains in the system and is active, the more it helps the patient."

"The dramatic improvement in how the new compound acted encourages us that this new approach will have broad applications in improving the efficacy of many protein drugs," Chilkoti said.

Another benefit of this approach, according to Chilkoti, is that the polymer should naturally degrade in the body over time and be easily excreted. "Because the compound is biodegradable, we should in principle be able to make even larger protein-polymer combinations with potentially even better pharmacologic properties," he said.

The researchers plan to apply their invention to other protein-based therapies, such as for and diabetes, to determine if they can improve effectiveness of the drug while reducing its undesirable toxic effects.

Source: Duke University (news : web)

Explore further: Study finds new links between number of duplicated genes and adaptation

add to favorites email to friend print save as pdf

Related Stories

‘Designer molecules’ being developed to fight disease

Jun 12, 2009

(PhysOrg.com) -- Researchers in the Department of Cardiovascular Sciences at the University of Leicester are developing a new way to make protein based drugs with potential applications in stroke, vascular inflammation, blood ...

Weighting cancer drugs to make them hit tumors harder

Mar 02, 2006

Scientists have devised a blueprint for boosting anti-cancer drugs' effectiveness and lowering their toxicity by attaching the equivalent of a lead sinker onto the drugs. This extra weight makes the drugs penetrate and accumulate ...

Recommended for you

Chrono, the last piece of the circadian clock puzzle?

11 hours ago

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

Drought hormones measured

11 hours ago

Floods and droughts are increasingly in the news, and climate experts say their frequency will only go up in the future. As such, it is crucial for scientists to learn more about how these extreme events affect plants in ...

Research traces the genetic print of the Asturian people

19 hours ago

The DNA of the people of Asturias still maintains the genetic prints of remote ages. A research conducted at the University of Oviedo proves that the old frontiers marked by the pre-Roman Astur settlements have left their ...

User comments : 0

More news stories

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.