Novel mechanism revealed for increasing recombinant protein yield in tobacco

Aug 06, 2009

Elastin-like polypeptides (ELPs) cause plants to store GM proteins in special 'protein bodies', insulating them from normal cellular degradation processes and increasing the overall protein yield. Researchers writing in the open access journal BMC Biology have visualised the mechanism by which the synthetic biopolymer increases the accumulation of recombinant proteins.

Rima Menassa worked with a team of researchers from Agriculture and Agri-Food Canada in London, Ontario, to develop and test the ELP tags by targeting an ELP-green fluorescent (GFP) fusion to various organelles in the leaves of the plant. Tobacco is well-suited as a production system for recombinant proteins but the mechanism by which ELP fusions increase production yields in transgenic tobacco leaves was previously unknown. Menassa said, "ELP was shown to almost double the yield of GFP to 11% of total soluble protein when hyperexpressed in the endoplasmic reticulum (ER)".

Based on their confocal and analyses, the researchers suggest that ELP fusions targeted to the ER induce the formation of novel mobile protein body-like structures in leaves, which appear similar in size and morphology to the prolamin-based protein bodies naturally found in plant seeds. These bodies may be responsible for ELP's positive effect on recombinant protein accumulation by excluding the heterologous protein from normal physiological turnover.

The researchers targeted their ELP fusions to the cytoplasm, chloroplasts, apoplast and ER in Nicotiana benthamiana tobacco plants. They found that the ER was the only intracellular compartment in which the ELP significantly enhanced recombinant protein accumulation. They conclude, "An ER-targeted ELP fusion approach provides an effective strategy for depositing large amounts of concentrated heterologous protein within the limited space of the cell".

More information: Induction of protein body formation in plant leaves by elastin-like polypeptide fusions; Andrew J Conley, Jussi J Joensuu, Rima Menassa and Jim E Brandle; BMC Biology (in press); www.biomedcentral.com/bmcbiol/

Source: BioMed Central (news : web)

Explore further: Scientists find key to te first cell differentiation in mammals

add to favorites email to friend print save as pdf

Related Stories

Do plants have the potential to vaccinate against HIV?

Mar 13, 2006

Scientists have developed a new kind of molecule which they believe could ultimately lead to the development of a vaccine against HIV using genetically modified tobacco. Writing in Plant Biotechnology Journal, Dr Patricia ...

Researchers discover cell's 'quality control' mechanism

Jul 29, 2008

Researchers in Japan and Canada have discovered a key component of the quality control mechanism that operates inside human cells – sometimes too well. The breakthrough has significant implications for the development of ...

Tomorrow’s tobacco to save lives

Nov 14, 2005

In the future, tobacco may be a crop that saves lives. Tobacco is one of those plants that could be used as green factories for high-tech production of drugs. A new discovery shows how production can be made considerably ...

Recommended for you

Research helps identify memory molecules

7 hours ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Computer simulations visualize ion flux

8 hours ago

Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology ...

Neutron diffraction sheds light on photosynthesis

8 hours ago

Scientists from ILL and CEA-Grenoble have improved our understanding of the way plants evolved to take advantage of sunlight. Using cold neutron diffraction, they analysed the structure of thylakoid lipids found in plant ...

DNA may have had humble beginnings as nutrient carrier

Sep 01, 2014

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

Sep 01, 2014

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0