Researchers discover breakthrough method for chemical separations

Aug 03, 2009

A team of researchers, led by chemical engineering and materials science professor Michael Tsapatsis in the University of Minnesota's Institute of Technology, have developed a more energy-efficient method of chemical separations that could revolutionize processes in the petrochemical and biofuels industries. The new discovery is published in the July 31 issue of Science journal.

The ability to separate and purify specific molecules in a chemical mixture is essential to chemical manufacturing. Many industrial separations rely on distillation, a process that is easy to design and implement but consumes a lot of energy.

With a grant from the National Science Foundation (NSF), Tsapatsis and his team have developed a new method for creating high-performance membranes from crystal sieves, called zeolites. The method could significantly increase the of chemical separations over conventional methods and enable higher production rates. The researchers developed a rapid heating treatment to remove structural defects in zeolite membranes that limit their performance, a problem that has plagued the technology for decades.

"Using membranes rather than energy-intensive processes such as distillation and crystallization could have a major impact on industry," said NSF program officer Rosemarie Wesson. This discovery could increase the energy efficiency of producing important chemical solvents such as xylene and renewable biofuels, such as ethanol and butanol, she said.

Tsapatsis explained that a universal challenge for biofuel production is the significant energy input required to separate and purify the desired products. Distillation is a commonly-used but energy-intensive separation method. Some experts project that the production of biofuels, such as ethanol, will reach 20 million barrels per day worldwide by 2030, Tsapatsis said. Assuming that technologically mature processes such as distillation continue to be used, the equivalent of 3 percent of the world's current total energy consumption would be needed for biofuel separations, he said.

Other biofuels, such as butanol, are also growing in popularity because of their compatibility with existing pipeline infrastructure, mixing capability with existing hydrocarbon fuels, and higher energy content. However, these heavier biofuels, with higher boiling points than water, are even more challenging to purify, Tsapatsis said. Membrane-based separation processes, like those developed by University of Minnesota researchers, can eliminate all but a small fraction of the energy usage associated with this type of biofuel production.

"We are very excited about our breakthrough research and the possibilities for the future," Tsapatsis said. "Great things can happen if these zeolite membranes work in industry the way we've seen them work in the lab."

Tsapatsis involved several University of Minnesota graduate students and post-doctoral fellows in this project. They include: Jungkyu Choi, now a postdoctoral fellow at the University of California, Berkeley, who performed most of the experiments; Mark Snyder, now an assistant professor at Lehigh University, who performed confocal microscopy experiments while a postdoctoral fellow in Tsapatsis's group, and Jared Stoeger, currently a Ph.D. candidate at the University of Minnesota, who performed permeation measurements using stainless steel tube supported membranes. Hae-Kwon Jeong, now an assistant professor at Texas A&M University, also performed some early rapid heating treatments while a postdoctoral fellow at the University of Illinois at Urbana-Champaign with engineering professor Richard Masel.

Tsapatsis and collaborators are now working on making zeolite membranes 10 to 100 times thinner to allow molecules to pass through more quickly. They hope to eventually implement their treatment process with its beneficial effects to these membranes as well.

Source: University of Minnesota (news : web)

Explore further: Selenium compounds boost immune system to fight against cancer

add to favorites email to friend print save as pdf

Related Stories

Membrane breaks through performance barrier

Jul 30, 2009

(PhysOrg.com) -- Engineers have developed a new method for creating high-performance membranes from crystal sieves called zeolites; the method could increase the energy efficiency of chemical separations up ...

Crystal Sieves, Born Anew

Apr 17, 2006

The porous, sieve-like minerals known as zeolites have been used for decades in purifiers, filters and other devices. Yet creating and refining a new type of zeolite is still a matter of sophisticated trial ...

Better way to desalinate water discovered

Feb 09, 2006

Chemical engineer Kamalesh Sirkar, PhD, a distinguished professor at New Jersey Institute of Technology and an expert in membrane separation technology, is leading a team of researchers to develop a breakthrough method to ...

Georgia Tech Takes Comprehensive Biofuels Approach

Sep 17, 2007

We feel it at the pump. Fuel prices are at record highs and so is the demand for alternative fuels. But major scientific and technological advances are still required before economically viable alternative ...

Recommended for you

Molecules that came in handy for first life on Earth

Nov 24, 2014

For the first time, chemists have successfully produced amino acid-like molecules that all have the same 'handedness', from simple building blocks and in a single test tube. Could this be how life started. ...

Jumping hurdles in the RNA world

Nov 21, 2014

Astrobiologists have shown that the formation of RNA from prebiotic reactions may not be as problematic as scientists once thought.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

sender
not rated yet Aug 03, 2009
Couple these zeolite sieves with pressure chambered centrifugal processing techniques and you've got the new biochemical distillation system for the 21st century.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.