Researchers capture bacterial infection on film (w/ Video)

Jul 27, 2009
Confocal microscope image showing insect immune cells (green) containing fluorescently labelled E.coli (red). Credit: University of Bath

(PhysOrg.com) -- Researchers have developed a new technique that allows them to make a movie of bacteria infecting their living host.

Whilst most studies of bacterial are done after the death of the infected organism, this system developed by scientists at the University of Bath and University of Exeter is the first to follow the progress of infection in real-time with living organisms.

The researchers used developing fruit fly embryos as a model organism, injecting fluorescently tagged bacteria into the and observing their interaction with the insect's immune system using time-lapse confocal microscopy.

The researchers can also tag individual bacterial proteins to follow their movement and determine their specific roles in the infection process.

This video is not supported by your browser at this time.
The insect immune cells known as hemocytes (green) rapidly engulf the bacteria following infection and this can be studied in real-time using timelapse microscopy. Credit: Isabella Vlisidou, University of Bath

The scientists are hoping to use this system in the future with human pathogens such as Listeria and Trypanosomes. By observing how these bacteria interact with the , researchers will gain a better understanding of how they cause an infection and could eventually lead to better antibacterial treatments.

Dr Will Wood, Research Fellow in the Department of Biology & Biochemistry at the University of Bath, explained: " often behave very differently once they have been taken out of their natural environment and cultured in a petri dish.

"In the body, immune surveillance cells such as hemocytes (or macrophages in vertebrates) are exposed to a battery of signals from different sources. The cells integrate these signals and react to them accordingly.

"Once these cells are removed from this complex environment and cultured in a petri dish these signals are lost. Therefore it is really important to study whole organisms to fully understand how bacteria interact with their host."

Dr Nick Waterfield, co-author on the study and Research Officer at the University of Bath, said: "To be able to film the microscopic battle between single bacterial cells and immune cells in a whole animal and in real time is astounding.

"It will ultimately allow us to properly understand the dynamic nature of the infection process."

Professor Richard Ffrench-Constant, Professor of Molecular Natural History at the University of Exeter, added: "For the first time this allows us to actually examine infection in real time in a real animal - it's a major advance!"

The study has been published in PLoS .

Source: University of Bath (news : web)

Explore further: The malaria pathogen's cellular skeleton under a super-microscope

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

For resetting circadian rhythms, neural cooperation is key

16 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

Rapid and accurate mRNA detection in plant tissues

18 hours ago

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

For cells, internal stress leads to unique shapes

Apr 16, 2014

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

User comments : 0

More news stories

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

Venture investments jump to $9.5B in 1Q

Funding for U.S. startup companies soared 57 percent in the first quarter to a level not seen since 2001, as venture capitalists piled more money into an increasing number of deals, according to a report due out Friday.