Jellyfish Robot Swims Like its Biological Counterpart

Jun 26, 2009 By Lisa Zyga feature
(Left) A living jellyfish and (right) a jellyfish robot made of electro-active polymer artificial muscle. Both jellyfish move by contracting the bell to generate a pulsating motion. Image: Yeom and Oh.

(PhysOrg.com) -- "Jellyfish are one of the most awesome marine animals, doing a spectacular and psychedelic dance in water," explain engineers Sung-Weon Yeom and Il-Kwon Oh from Chonnam National University in the Republic of Korea. Recently, Yeom and Oh have built a jellyfish robot that imitates the curved shape and unique locomotive behavior of the living jellyfish.

As the researchers explain, advances in electro-active polymers (EAP) enabled them to achieve this biomimetic swimming behavior in a robot. One specific type of EAP, ionic polymer metal composites (IMPC), can be used to make actuators that behave like biological muscles, exhibiting large bending under a low applied voltage. The muscle material has several advantages for biomimetic robots, such as compactness, high , controllable steering, and quiet locomotion. In this study, the researchers used this material, permanently bending it to mimic the living jellyfish’s bell (the hemispherical top part).

“This is the first jellyfish robot based on the electro-active polymer artificial muscle,” Oh told PhysOrg.com. “They could be used as entertainment robots, micro/nano-robots, and biomedical robots in the near future.”

Living jellyfish, the authors note, can vary in size from a few inches up to seven feet in diameter. Yet all jellyfish use a similar, simple swimming mechanism. By contracting its bell, the animal reduces the space underneath it, forcing water out through a lower opening near its mouth and tentacles. This pulsating motion allows the jellyfish to partially control its vertical . This ability is important, since jellyfish are photosensitive and prefer deeper water at brighter times of day. Although living jellyfish can move vertically, they passively depend on ocean current, tides, and wind for horizontal movement.

Previous research on the locomotion of living jellyfish has found that, if the animal’s muscles force the bell to contract at its resonant frequency, less energy is required for movement. In their study, the researchers mimicked the natural pulse and recovery processes of the living jellyfish. They found that the bio-inspired periodic input signal enables the jellyfish robot to obtain a large floating velocity upward; in comparison, harmonic sinusoidal signals do not push the robot upward.

Overall, their study has shown that the curved shape of the IPMC actuator can be used to build a jellyfish robot that successfully mimics the locomotion of living jellyfish. Oh added that, in the future, he plans to develop artificial biomimetic jellyfish robots that have integrated self-powered actuators and sensors, as well as an automatic steering system.

More information: Sung-Weon Yeom and Il-Kwon Oh. “A biomimetic based on ionic polymer metal composite actuators.” Smart Mater. Struct. 18 (2009) 085002 (10pp).

Copyright 2009 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: SRI microrobots show fast-building factory approach (w/ video)

add to favorites email to friend print save as pdf

Related Stories

Dutch zoo breeds own jellyfish

Sep 29, 2007

Marine biologists at a Dutch zoo say they have succeeded in the difficult task of breeding jellyfish in captivity.

Australian jellyfish range grows larger

Aug 20, 2007

U.S. marine scientists have discovered the range of the Australian spotted jellyfish (Phylllorhiza punctata) now extends from Texas to North Carolina.

Jellyfish joyride a threat to the oceans

Jun 08, 2009

Early action could be crucial to addressing the problem of major increases in jellyfish numbers, which appears to be the result of human activities.

Recommended for you

Simplicity is key to co-operative robots

Apr 16, 2014

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

Students turn $250 wheelchair into geo-positioning robot

Apr 16, 2014

Talk about your Craigslist finds! A team of student employees at The University of Alabama in Huntsville's Systems Management and Production Center (SMAP) combined inspiration with innovation to make a $250 ...

Using robots to study evolution

Apr 14, 2014

A new paper by OIST's Neural Computation Unit has demonstrated the usefulness of robots in studying evolution. Published in PLOS ONE, Stefan Elfwing, a researcher in Professor Kenji Doya's Unit, has succes ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

jmhenry
5 / 5 (1) Jun 26, 2009
It seems to me that nature has no end of models for robots. I have seen articles on insect robots, beaver-tail robots, snakebots, ratbots, and dinasour robots. A jellyfish just had to be in there somewhere.

I thought this article high-lighted quite well how nature supplies many models for robots and how very high-tech materials are being used in the development of these innovative machines.

More news stories

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Chronic inflammation linked to 'high-grade' prostate cancer

Men who show signs of chronic inflammation in non-cancerous prostate tissue may have nearly twice the risk of actually having prostate cancer than those with no inflammation, according to results of a new study led by researchers ...