Lasers can lengthen quantum bit memory by 1,000 times

Jun 24, 2009

Physicists have found a way to drastically prolong the shelf life of quantum bits, the 0s and 1s of quantum computers.

These precarious bits, formed in this case by arrays of semiconductor containing a single extra electron, are easily perturbed by fluctuations from the nuclei of the atoms creating the quantum dot. This perturbation causes the bits to essentially forget the piece of information they were tasked with storing.

A quantum dot is a semiconductor that is one candidate for creating quantum bits.

The scientists, including the University of Michigan's Duncan Steel, used lasers to elicit a previously undiscovered natural feedback reaction that stabilizes the quantum dot's magnetic field, lengthening the stable existence of the by several orders of magnitude, or more than 1,000 times.

The findings are published in the June 25 edition of Nature.

Because of their ability to represent multiple states simultaneously, quantum computers could theoretically factor numbers dramatically faster and with smaller computers than conventional computers. For this reason, they could vastly improve computer security.

"In our approach, the quantum bit for information storage is an electron spin confined to a single dot in a semiconductor like indium arsenide. Rather than representing a 0 or a 1 as a transistor does in a classical computer, a quantum bit can be a linear combination of 0 and 1. It's sort of like hitting two piano keys at the same time," said Steel, a professor in the Department of Physics and the Robert J. Hiller Professor of Electrical Engineering and Computer Science.

"One of the serious problems in is that anything that disturbs the phase of one of these spins relative to the other causes a loss of coherence and destroys the information that was stored. It is as though one of the two notes on the piano is silenced, leaving only the other note."

Spin is an of the electron that isn't rotation, but is more like magnetic poles. are said to have spin up or down, which represent the 0s and 1s.

A major cause of information loss in a popular class of semiconductors called 3/5 materials is the interaction of the electron (the quantum bit) with the nuclei of the atoms in the quantum dot holding the electron. Trapping the electron in a particular spin, as is necessary in quantum computers, gives rise to a small magnetic field that couples with the magnetic field in the nuclei and breaks down the memory in a few billionths of a second.

By exciting the quantum dot with a laser, the scientists were able to block the interaction of these magnetic fields. The laser causes an electron in the quantum dot to jump to a higher energy level, leaving behind a charged hole in the electron cloud. This hole, or space vacated by an electron, also has a magnetic field due to the collective spin of the remaining electron cloud. It turns out that the hole acts directly with the nuclei and controls its magnetic field without any intervention from outside except the fixed excitation by the lasers to create the hole.

"This discovery was quite unexpected," Steel said. "Naturally occurring, nonlinear feedback in physical systems is rarely observed. We found a remarkable piece of physics in nature. We still have other major technical obstacles, but our work shows that one of the major hurdles to quantum computers that we thought might be a show-stopper isn't one," Steel said.

The paper is called "Optically-controlled locking of the nuclear field via coherent dark-state spectroscopy."

Source: University of Michigan (news : web)

Explore further: Physicists design zero-friction quantum engine

add to favorites email to friend print save as pdf

Related Stories

Fast quantum computer building block created

Aug 20, 2008

(PhysOrg.com) -- The fastest quantum computer bit that exploits the main advantage of the qubit over the conventional bit has been demonstrated by researchers at University of Michigan, U.S. Naval Research Laboratory and ...

Scientists rotate electron spin with electric field

Nov 01, 2007

Researchers at the Delft University of Technology’s Kavli Institute of Nanoscience and the Foundation for Fundamental Research on Matter (FOM) have succeeded in controlling the spin of a single electron ...

Quantum computing spins closer

Nov 19, 2008

(PhysOrg.com) -- The promise of quantum computing is that it will dramatically outshine traditional computers in tackling certain key problems: searching large databases, factoring large numbers, creating uncrackable codes ...

Recommended for you

Physicists design zero-friction quantum engine

Sep 16, 2014

(Phys.org) —In real physical processes, some energy is always lost any time work is produced. The lost energy almost always occurs due to friction, especially in processes that involve mechanical motion. ...

Fluid mechanics suggests alternative to quantum orthodoxy

Sep 12, 2014

The central mystery of quantum mechanics is that small chunks of matter sometimes seem to behave like particles, sometimes like waves. For most of the past century, the prevailing explanation of this conundrum ...

The sound of an atom has been captured

Sep 11, 2014

Researchers at Chalmers University of Technology are first to show the use of sound to communicate with an artificial atom. They can thereby demonstrate phenomena from quantum physics with sound taking on ...

The quantum revolution is a step closer

Sep 11, 2014

A new way to run a quantum algorithm using much simpler methods than previously thought has been discovered by a team of researchers at the University of Bristol. These findings could dramatically bring ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

LuckyBrandon
1 / 5 (1) Jun 24, 2009
oh joy of oy, now we can hold data for millionths of a second instead of billionths of a second..lol


call me when we can hold data for long enough to page it to hard disk at least :D