Fast quantum computer building block created

August 20, 2008,

(PhysOrg.com) -- The fastest quantum computer bit that exploits the main advantage of the qubit over the conventional bit has been demonstrated by researchers at University of Michigan, U.S. Naval Research Laboratory and the University of California at San Diego.

The scientists used lasers to create an initialized quantum state of this solid-state qubit at rates of about a gigahertz, or a billion times per second. They can also use lasers to achieve fundamental steps toward programming it.

A conventional bit can be a 0 or a 1. A quantum bit, or qubit, can be both at the same time. Until now, scientists couldn't stabilize that duality.

Physics professor Duncan Steel, doctoral student Xiaodong Xu and their colleagues used lasers to coherently, or stably, trap the spin of one electron confined in a single semiconductor quantum dot. A quantum dot is like a transistor in a conventional computer.

The scientists trapped the spin in a dark state in which they can arbitrarily adjust the amount of 0 and 1 the qubit represents. They call this state "dark" because it does not absorb light. Therefore, light does not cause loss of coherence between the two states. In other words, the light does not destabilize the qubit. A paper on these findings will be published in Nature Physics and is available early in the online edition.

"We are the first to show that you can do this to a single electron in a self-assembled quantum dot," Steel said. "If you're going to do quantum computing, you have to be able to work with one electron at a time."

Spin is an intrinsic property of the electron that isn't a real rotation. Steel compares it to the magnetic poles. Electrons are said to have spin up or down. In quantum computing, the up and down directions represent the 0s and 1s of conventional computing.

Steel's approach to developing a quantum computer is to use ultrafast lasers to manipulate arrays of semiconductor quantum dots, each containing one electron. Quantum logic gates are formed by quantum mechanical interactions between the dots.

Previously in Steel's lab, researchers have used a laser to produce an electron in a state representative of a 1 or a 0 and a small amount of the other state. Now, using two laser frequencies, they have trapped it as a 0 and a 1 at the same time, and they can adjust the amount of each.

Because the electron is trapped in a dark state, applied light can't destroy the coherence. Energy from light can flip the spin of electrons, or quantum bits, which would jumble any information being stored in the bit.

"This dark state is a place where information can be stored without any error," Steel said.

Because of their ability to represent multiple states simultaneously, quantum computers could theoretically factor numbers dramatically faster and with smaller computers than conventional computers. For this reason, they could vastly improve computer security.

"The National Security Agency has said that based on our present technology, we have about a 20-year window of security," Steel said. "That means if we sent up a satellite today, it would take somebody about 20 years to crack the code. Quantum computers will let you develop a code that would be impossible to crack with a conventional computer."

Physicists achieved this by using two continuous wave lasers.

The paper is called "Coherent Population Trapping of an Electron Spin in a Single Negatively Charged Quantum Dot." It is available online at www.nature.com/nphys/journal/v … /full/nphys1054.html .

Provided by University of Michigan

Explore further: Unconventional superconductor may be used to create quantum computers of the future

Related Stories

New quantum memory stores information for hours

February 22, 2018

Storing information in a quantum memory system is a difficult challenge, as the data is usually quickly lost. At TU Wien, ultra-long storage times have now been achieved using tiny diamonds.

Researchers observe electrons zipping around in crystals

February 1, 2018

The end of the silicon age has begun. As computer chips approach the physical limits of miniaturization and power-hungry processors drive up energy costs, scientists are looking to a new crop of exotic materials that could ...

First 3-D imaging of excited quantum dots

February 8, 2018

Quantum dots are rapidly taking center stage in emerging applications and research developments, from enhanced LCD TVs and thin-film solar cells, to high-speed data transfer and fluorescent labeling in biomedical applications.

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

patnclaire
1 / 5 (1) Aug 20, 2008
The link is good but there is a monetary charge for the article...information is NOT free.
Arikin
not rated yet Aug 20, 2008
Newspapers are NOT free either... Its called a subscription. :-)

Anyway, This is still experimentation. Has anyone tried making a small memory proto-type??? Any real world usage of this? Have they stored a character or two with this technique?

Pick a technique and try applying it. Sure the technique used may change but maybe we will learn something.
superhuman
5 / 5 (1) Aug 21, 2008
OMG, who wrote all this crap?

The fastest quantum computer bit

The purpose of bits and qubits is to store information they have no associated speed.

They can also use lasers to achieve fundamental steps toward programming it.

No, they can use lasers to program it.

Until now, scientists couldn't stabilize that duality.

Huh? Stabilize what duality? They could set qubits to any state they wanted.

used lasers to coherently, or stably, trap the spin

Coherently does not mean stably, and you cannot trap spin, you can set spin.

A quantum dot is like a transistor in a conventional computer.

A quantum dot a completely different thing then a transistor in conventional computer.


They call this state "dark" because it does not absorb light.

Dark things are dark because they DO absorb light. Also if it does not absorb light how can they set it with lasers?


"If you're going to do quantum computing, you have to be able to work with one electron at a time."

Not true, just today I read about quantum computing with strings of ions in ion traps.

Spin is an intrinsic property of the electron that isn't a real rotation. Steel compares it to the magnetic poles.

It isn't real magnetic poles either.

And so on...
WorldSci
not rated yet Aug 21, 2008
The International Journal of Quantum Information (IJQI) is currently seeking original and unpublished manuscripts for a Theme Issue on Distributed Quantum Computing, scheduled for
publication in the first quarter of 2009. Interested parties, do feel free to check out the paper submission details at:

http://www.worlds...608).pdf

Thanks and Regards:-)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.