Researchers edit genes in human stem cells

Jun 18, 2009

Researchers at the Johns Hopkins School of Medicine have successfully edited the genome of human- induced pluripotent stem cells, making possible the future development of patient-specific stem cell therapies. Reporting this week in Cell Stem Cell, the team altered a gene responsible for causing the rare blood disease paroxysmal nocturnal hemoglobinuria, or PNH, establishing for the first time a useful system to learn more about the disease.

"To date, only about six genes have been successfully targeted or edited in human out of countless people and attempts—that's just not efficient enough if we want to move disease research and therapy forward," says Linzhao Cheng, Ph.D., an associate professor of gynecology and obstetrics and member of the Johns Hopkins Institute of Cell Engineering. "We've been able to improve gene targeting and editing in human cells more than 200 fold."

Cheng's lab and collaborators at Johns Hopkins study PNH, a condition where "friendly fire" kills patients' own and the body can't replenish the lost blood cells due to loss of normal blood stem cells. PNH is an acquired disease that occurs only in adults, according to Cheng. "It's a tough condition to study because we need to study it in blood stem cells and they're difficult to grow in the lab. So for years we've been trying to develop another cell system to better understand and perhaps fix what's going on in PNH." To establish a system for research, they used human embryonic stem cells which can be expanded unlimitedly in the laboratory, but they also had to create a mutation as found in a PNH patient.

To target and remove the function of the one specific gene known to cause PNH, the research team improved on the standard approach of gene targeting, which can remove a functional gene or replace a dysfunctional gene. The gene targeting technology, first used successfully for mouse embryonic stem cells, won a Nobel Prize in Physiology or Medicine in 2007.

Gene targeting exploits a cell's own ability to repair broken DNA. When DNA breaks from exposure to mutagens or other agents like DNA-cutting enzymes, DNA-repairing enzymes in the cell find and re-join the two exposed DNA ends. However, if another piece of DNA with exposed ends is floating around, it effectively can be spliced into the broken DNA during repair, and replace the defective copy.

The team's technological improvement includes the use of custom-designed molecular scissors that are made by collaborators at Harvard University and University of Texas Southwestern Medical Center. These engineered DNA cutting enzymes make a precise break at specific locations in a cell's DNA—in this case in the gene that causes PNH. They added the molecular scissors and a fragment of DNA containing a gene that confers selection of rare targeted clones in both human embryonic stem cells and induced pluripotent stem cells. The latter, also known as iPS cells, are very similar to embryonic stem cells in biological properties, but generated by using adult tissues such as skin.

Of all the cells surviving selection, they picked and grew eight iPS cell lines to study further, and five of those contained a targeted insertion at the gene site. Further examination showed that the cells contained the correct number of chromosomes, no longer contained any trace of the molecular scissors and had characteristics as cells from PNH patients that lack a group of cell surface molecules.

"I commend my team especially Dr. Jizhong Zou who spent three years with the help of many collaborators on this challenging project," says Cheng. "We're very excited about this accomplishment; it will enable better studies for other blood diseases. But there's still much to do before we can really use human iPS cells in clinical therapies."

Cheng's team will continue to improve on techniques and begin applying these techniques to iPS cells from patients.

Source: Johns Hopkins Medical Institutions

Explore further: Compound from soil microbe inhibits biofilm formation

Related Stories

Reprogrammed adult cells treat sickle-cell anemia in mice

Dec 06, 2007

Mice with a human sickle-cell anemia disease trait have been treated successfully in a process that begins by directly reprogramming their own cells to an embryonic-stem-cell-like state, without the use of eggs. This is the ...

Recommended for you

Compound from soil microbe inhibits biofilm formation

9 hours ago

Researchers have shown that a known antibiotic and antifungal compound produced by a soil microbe can inhibit another species of microbe from forming biofilms—microbial mats that frequently are medically harmful—without ...

Researcher among best in protein modeling contests

12 hours ago

A Purdue University researcher ranks among the best in the world in bioinformatics competitions to predict protein structure, docking and function, making him a triple threat in the world of protein modeling.

Survey of salmonella species in Staten Island Zoo's snakes

13 hours ago

For humans, Salmonella is always bad news. The bacterial pathogen causes paratyphoid fever, gastroenteritis and typhoid. But for snakes, the bacteria aren't always bad news. Certain species of Salmonella are a natural part ...

A long-standing mystery in membrane traffic solved

Mar 27, 2015

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.