Genetic code cracked of organisms behind fungal disease

Jun 15, 2009

Scientists have unlocked the code for the building blocks of fungal organisms which are responsible for mild as well as potentially deadly infections in people.

Cracking the of six species of Candida - the most common cause of fungal infection worldwide - is a major step towards finding new therapies for treating the health problems caused by these organisms.

Candida albicans is perhaps best known to most as it can cause thrush in women and babies, although this is easily treated.

However several Candida species can pose a far more serious threat to people whose immune systems are compromised, leaving them vulnerable to fungal infections.

These include cancer and trauma patients and those who have undergone bone and organ transplants.

Now in a paper published in Nature an international team of scientists - including University of Aberdeen researchers - report that they have cracked and analysed the genetic code of six Candida species.

Professor Neil Gow, Chair in Microbiology at the University of Aberdeen, said: "This is a landmark paper in the field of fungal research.

"Understanding the genome sequences of these Candida species gives us a blueprint for increasing our understanding of the diseases caused by these organisms.

"Some species of Candida can cause serious and life threatening infections in patients whose immune systems are suppressed which makes them more susceptible to fungal infections.

"The mortality rate of someone who has contracted septicaemia caused by Candida is about 30% to 40%.

"While understanding the genetic make-up of Candida does not in itself give us a cure or a new treatment, it does give us a toolbox for tackling the organisms.

"Our findings will help define future fungal studies and also help speed up progress in developing new therapies for combating Candida infections."

Professor Neil Gow, Dr Carol Munro, Dr Carol Munro, Professor Al Brown, Dr Ian Stansfield and Dr Steven Bate were the Aberdeen researchers who were part of the international collaboration that analysed the genome sequencing that was decoded by the Broad Institute of MIT and Harvard.

Their subsequent findings also revealed the relationships of Candida species to each other and discovered why some species seem to have lost the ability to mate.

Source: University of Aberdeen (news : web)

Explore further: Commensal bacteria were critical shapers of early human populations

add to favorites email to friend print save as pdf

Related Stories

Voriconazole: A highly potent treatment for fungal infections

Dec 16, 2008

The effectiveness of voriconazole in combating fungal infections has been confirmed by a new study to be featured in the International Journal of Antimicrobial Agents, published by Elsevier. Fungal infections can kill people ...

Recommended for you

Why does rotting food smell bad?

Dec 16, 2014

When food goes bad and starts to become pungent, it is most often due to the growth of spoilage microbes such as bacteria, yeasts and mold. Odors can come from two sources: chemicals that are released from ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.