New rotors could help develop nanoscale generators

May 27, 2009
New rotors could help develop nanoscale generators
The research focused on rotating magnetic fields which play an important part in machines such as electric motors

(PhysOrg.com) -- Scientists at the University of Liverpool have developed a molecular structure that could help create current-generating machines at the nanoscale.

In collaboration with the Chinese Academy of Sciences in Beijing, scientists have investigated the rotation of molecules on a fixed surface to understand how they may help in the development of future rotor-based machinery at nanoscale level.

The research focused on rotating magnetic fields, which play an important part in machines like electric motors and generators. The difficulty for technology at the atomic scale is to replicate this property with rotors the size of small . A number of rotating molecules have already been identified, but so far molecules have not been used to create rotating magnetic fields.

The researchers used a gold metal surface to anchor phtalocyanine molecules, which have a metallic centre, in a large array. The anchor point, a single gold atom on top of the attached to a of the molecule, allowed the molecules to rotate just off-centre.

Professor Werner Hofer, from the University's School of Chemistry, explains: "The difficulty in creating molecular rotors is that molecules need a fixed anchor point and will often react with the surface you want to fix them to. A gold surface interacts very weakly with molecules; it moreover provides regular anchor points to attach single molecules, which then line up in large and well ordered arrays."

"The centre atoms, which are metallic, spin around the atoms creating an off-axis rotation. The beauty of phtalocyanines is that the centre can be functionalised with any metal atom; the research could then lead to the development of rotating magnetic fields at a very small scale."

Scientists believe that this could be the first step towards the fabrication of machines for the generation of currents at small scale.

The research is published in .

Source: University of Liverpool (news : web)

Explore further: Protons fuel graphene prospects

add to favorites email to friend print save as pdf

Related Stories

Remotely Controlled Nanomachines

Jul 03, 2007

Physicists at the University of California at Berkeley have produced images that show how light can control some of the smallest possible machines.

Molecules that suck

Nov 21, 2005

The interaction between the tip of a scanning tunnelling microscope (STM) and atoms or molecules bound to a surface can be used to construct impressive nanostructures, such as the 'quantum corral'.

Theorist helps develop first single molecule transistor

Jun 07, 2005

A scientist at the University of Liverpool has helped to create the world's smallest transistor - by proving that a single molecule can power electric circuits Dr Werner Hofer, from the University's Surface Science Research ...

Recommended for you

Protons fuel graphene prospects

4 hours ago

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, University of Manchester researchers have found.

Cooling with the coldest matter in the world

Nov 24, 2014

Physicists at the University of Basel have developed a new cooling technique for mechanical quantum systems. Using an ultracold atomic gas, the vibrations of a membrane were cooled down to less than 1 degree ...

Magnetic fields and lasers elicit graphene secret

Nov 24, 2014

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have studied the dynamics of electrons from the "wonder material" graphene in a magnetic field for the first time. This led to the discovery of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.