Chemistry research could produce faster computers

July 11, 2006

Chemists at the University of Liverpool are helping to create future electronics based on molecules for faster and smaller computers.

Experts have been working for many years to understand how to work with electronic material produced on an increasingly small scale. In the emerging field of nano-science and nano-technologies it is important for scientists to be able to control the structure and bonding of molecules that are used in creating small scale electronic components for products such as computers.

Scientists at Liverpool have succeeded in imaging and forming a unique bond between a single gold atom and a single organic molecule called a pentacene. They managed to bind the atom to the pentacene and take images of rearrangements of the electrons participating in the formation of the chemical bond.

The team selected the pentacene as it is a special class of molecule that has qualities of particular use in molecular electronics. The gold atom is a metal atom that attracts an extra electron.

Professor Mats Persson, from the University's Department of Chemistry said: "This new experiment allows us to control the arrangement and shape of chemical bonds and to gain new insight into making contact with a single molecule with potential importance for molecular electronics. There will come a time when electronic material will become so small that we will need to control the structure down to the atomic scale and the chemical bonds between single molecules and atoms.

"The atomic scale control of single-molecule chemistry in this experiment opens up new perspectives in the emerging field of molecular electronics, particularly in connecting organic molecules with electronic components. This could be important in creating electronics for future computers which are faster, smaller and have less power consumption."

Source: University of Liverpool

Explore further: Scientists solve a magnesium mystery in rechargeable battery performance

Related Stories

3-D atomic structure of TRPML1 ion channel published

October 13, 2017

UT Southwestern Medical Center researchers today published a 3-D atomic structure of the ion channel found in mammals that is implicated in a rare, inherited neurodegenerative disease in humans. The work marks the first ...

Cold molecules on collision course

October 13, 2017

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at the same time. Scientists around Dr. Martin Zeppenfeld from the ...

A range of substances with antitumor properties synthesized

October 16, 2017

Scientists from RUDN University have synthesized a number of new cytotoxic substances that can damage cells. The results of the study could be used in cancer therapy. The compounds were obtained by domino reaction, a successive ...

Recommended for you

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(Phys.org)—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Close up view of growing polymer chain show jump steps

October 20, 2017

(Phys.org)—A team of researchers at Cornell University has devised a means for watching as a polymer chain grows after application of a catalyst. In their paper published in the journal Science, the team explains how they ...

Dawn mission extended at Ceres

October 20, 2017

NASA has authorized a second extension of the Dawn mission at Ceres, the largest object in the asteroid belt between Mars and Jupiter. During this extension, the spacecraft will descend to lower altitudes than ever before ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.