Scientists identify how key protein keeps chronic infection in check

May 08, 2009

Why is the immune system able to fight off some viruses but not others, leading to chronic, life-threatening infections like HIV and hepatitis C?

A new UCLA AIDS Institute study suggests the answer lies in a protein called interleukin-21 (IL-21), a powerful molecule released by during chronic infection. Published May 7 in the online edition of Science, the finding could explain how the limits , restricting a virus's spread through the body.

The researchers looked at two types of T-cells — CD4 T-cells and CD8 T-cells — which are immune cells that play an important role in the body's response to infection. The CD4 T-cells help the immune system by producing IL-21 during chronic infection, bolstering the CD8 T-cells' ability to fight off the .

"The CD4 cells are the regulators — the generals, if you will," said principal investigator David Brooks, assistant professor of microbiology, immunology and at the David Geffen School of Medicine at UCLA. "The CD8 cells go out and kill the invaders; they're like the privates in the field."

To shed light on how CD4 T-cells help their CD8 counterparts clear viruses, the researchers infected mice with one of two strains of a virus. They knew that the first strain would generate a short-term infection and the second a chronic infection.

The scientists tested each strain on two groups of mice. One group was normal and the other was bred without IL-21 receptors.

In the normal mice, the first strain elicited a strong T-cell response that completely eliminated the virus in 10 days. The second strain caused a chronic infection that exhausted the T-cells, hampering their ability to fight the virus. The UCLA team detected high levels of IL-21 in these mice, suggesting that the protein plays a crucial role in sustaining the T-cells' ability to mount an immune response during long-lasting infection.

When the scientists infected the mice that lacked IL-21 receptors with the chronic infection strain, something curious happened. The majority of virus-fighting CD8 T-cells disappeared, preventing the immune system from containing the spread of the virus.

"IL-21 fuels CD8 T-cells' ability to function," Brooks said. "These immune cells are running a long-distance race to contain the virus before it spreads. If they don't get fed, they collapse on the track."

Without IL-21, the CD8 T-cells dwindled, even when the CD4 T-cells produced a robust response. The result indicates that the T-cells rely on IL-21 to resolve persistent infection.

"After the immune system loses CD8 T-cells, it's unable to clear the virus," Brooks said. "This tells us that IL-21 is a critical player in the body's fight against chronic infection."

The study was funded by the UCLA Center for AIDS Research, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, and the National Institutes of Health. Brooks' co-authors included Heidi Elsaesser of UCLA and Karsten Sauer of the Scripps Research Institute.

Source: University of California - Los Angeles

Explore further: For cells, internal stress leads to unique shapes

add to favorites email to friend print save as pdf

Related Stories

Exhausted B cells hamper immune response to HIV

Jul 14, 2008

Recent studies have shown that HIV causes a vigorous and prolonged immune response that eventually leads to the exhaustion of key immune system cells--CD4+ and CD8+ T-cells--that target HIV. These tired cells become less ...

Immune exhaustion in HIV infection

May 06, 2008

As HIV disease progresses in a person infected with the HIV virus, a group of cells in the immune system, the CD8+ T lymphocytes, become “exhausted,” losing many of their abilities to kill other cells infected by the ...

Recommended for you

For cells, internal stress leads to unique shapes

2 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

3 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Revealing camouflaged bacteria

5 hours ago

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

User comments : 0

More news stories

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

For cells, internal stress leads to unique shapes

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Ebola virus in Africa outbreak is a new strain

The Ebola virus that has killed scores of people in Guinea this year is a new strain—evidence that the disease did not spread there from outbreaks in some other African nations, scientists report.