Major advance in cell reprogramming technology

Apr 23, 2009

In a paper publishing online April 23rd in Cell Stem Cell, a Cell Press journal, Dr. Sheng Ding and colleagues from the Scripps Research Institute in La Jolla, California, report an important step forward in the race to make reprogrammed stem cells that may be better suited for use in clinical settings.

Ding and his colleagues show that mouse cells can be reprogrammed to form with a combination of purified proteins and a chemical additive, thus avoiding the use of .

The discovery three years ago that adult cells could be reprogrammed to form induced pluripotent stem cells, or iPS cells, with similar properties to embryonic stem cells was a major scientific breakthrough. These cells hold enormous potential for drug development and even cell therapy processes, and this promise has garnered significant attention from scientists and the media worldwide. However, a major caveat to the eventual application of iPS cells is that until now all the methods used to generate them have required the introduction of genetic material to make the needed for reprogramming. Although some research groups have recently generated iPS cells that lack genetic modifications, even the most advanced methods used genes in the form of plasmids, and thus the risk of genetic mutations caused by the introduced sequences remained.

In their new paper, Ding and co-authors avoid this risk entirely by adding specially modified versions of reprogramming proteins directly to the growing fibroblasts. The proteins are broken down by the cells after they are added to the culture, so to sustain protein activity long enough to induce reprogramming the authors used repeated cycles of protein addition. Ding and colleagues named the reprogrammed cells that arise from this process "protein-induced pluripotent stem cells," or piPS cells.

The piPS cell protocol "represents a significant advance in generating iPS cells, and has several advantages over previous iPS cell methods" says Ding. Reprogramming without genetic material is a milestone that many in the iPS cell field have been seeking to achieve, and doing so will provide further fuel for the rapid progress of this highly exciting area of biomedical research.

Source: Cell Press (news : web)

Explore further: Fungus deadly to AIDS patients found to grow on trees

add to favorites email to friend print save as pdf

Related Stories

Researchers piggyback to safer reprogrammed stem cells

Feb 27, 2009

Austin Smith and his research team at the Centre for Stem Cell Research in Cambridge have just published in the journal Development a new and safer way of generating pluripotent stem cells - the stem cells that can give r ...

New technique produces genetically identical stem cells

Jul 01, 2008

Adult cells of mice created from genetically reprogrammed cells—so-called induced pluripotent stem (IPS) stem cells—can be triggered via drug to enter an embryonic-stem-cell-like state, without the need for further genetic ...

Recommended for you

Some anti-inflammatory drugs affect more than their targets

18 hours ago

Researchers have discovered that three commonly used nonsteroidal anti-inflammatory drugs, or NSAIDs, alter the activity of enzymes within cell membranes. Their finding suggests that, if taken at higher-than-approved ...

Researchers discover new strategy germs use to invade cells

Aug 20, 2014

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

Aug 20, 2014

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

User comments : 0