Liquid crystal lasers promise cheaper, high colour resolution laser television

Apr 20, 2009
Polychromatic laser emission from a gradient pitch liquid crystal cell, pumped from a single optical source.

(PhysOrg.com) -- Researchers at the Centre of Molecular Materials for Photonics and Electronics (CMMPE) (part of the Department's Photonics Research Group at the University of Cambridge) are leading the way towards the development of extremely high colour resolution laser displays using liquid crystal laser technology.

Laser displays are new to the market, and are currently being developed by a number of electronics manufacturers. In a laser display, pixels of light emission are generated from three separate red, green and blue (RGB) laser sources. They therefore have a much narrower spectral linewidth compared to the relatively broadband RGB sources from other display technologies, including CRT, plasma, LCD and even the latest organic light-emitting diode (OLED) displays. When these three narrow linewidth red, green and blue sources are combined in a laser display, they offer unprecedented depths of colour resolution over competing display technologies.

Independent red, green and blue liquid crystal laser arrays.

CMMPE has been performing extensive research into a new form of laser technology based on liquid crystals. In a recent article in , they demonstrated a two-dimensional liquid crystal laser array, consisting of red, green and blue colours simultaneously being emitted from a single liquid crystal laser device, whilst being optically pumped with a single 430nm source. The article suggested that liquid crystal lasers could be used to replace the individual RGB lasers that are currently required in emerging laser displays. This would facilitate a reduction in the fabrication and materials cost of this currently fabrication-expensive technology. Furthermore, liquid crystal lasers are less likely to suffer from problems such as speckle, which are commonly associated with conventional laser display systems.

The liquid crystal laser itself is based on a similar device architecture as a conventional liquid crystal display. Liquid crystals are fast becoming an alternative medium for use as the feedback structure for a wide variety of miniature laser devices. Certain liquid crystal phases, in particular the chiral nematic phase, spontaneously self-organize to form a helical structure with a periodic refractive index. When combined with a gain medium, such as a fluorescent dye, the chiral liquid crystal provides sufficient feedback to generate lasing within a device of thicknesses less than a human hair.

Simultaneous red, green and blue emitting liquid crystal laser array.

Unlike most conventional semiconductor lasers, the emission wavelength of a liquid crystal laser can be dynamically tuned using an applied voltage to alter the degree of periodicity of the macroscopic molecular structure. A further merit of this technology is that the emission can be chosen to be at any desired wavelength across the visible range through careful control, chemically, of the macroscopic material properties. A gradient in the periodicity of the liquid crystal structure can therefore be formed, which gives rise to simultaneous different emission wavelengths across the device. Such a feature is not readily achievable with existing laser technologies.

lasers, however, are not merely restricted in their use to displays. Researchers at CMMPE are also developing applications for their use in infra-red medical diagnostic tools, telecommunication devices and holographic projection.

This research is on-going and is part of the four-year Basic Technology Research Grant 'COSMOS' funded by the EPSRC (Engineering and Physical Sciences Research Council) to develop a new generation of micron sized tunable coherent light sources based on ordered organic periodic structures.

More information:

Articles on this research appeared in:
Optics Express (November, 2008)
Laser Focus World (January 2009)
Nature Photonics April 2009, Volume 3 No 4 pp177-236
Nature Photonics October 2008, Volume 2 No 10 pp581-638

Provided by University of Cambridge (news : web)

Explore further: Research demonstrates various possibilities for controlling light in the terahertz frequency range

add to favorites email to friend print save as pdf

Related Stories

The Big Blue

Aug 18, 2005

Liquid-crystal 'blue phases' can be just about any colour in the rainbow. This makes them potentially useful for all sorts of applications, from electrically switchable colour displays to light filters and ...

Recommended for you

How cloud chambers revealed subatomic particles

15 hours ago

Atoms are made of electrons, protons and neutrons. Protons and neutrons are in turn made up of quarks. These are just some of the elementary particles that make up the foundation of modern particle physics. ...

When a doughnut becomes an apple

16 hours ago

In experiments using the wonder material graphene, ETH researchers have been able to demonstrate a phenomenon predicted by a Russian physicist more than 50 years ago. They analyzed a layer structure that ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

Bob_Kob
not rated yet Apr 21, 2009
Yeah and then we all go blind from lasers shining in our eyes. "Oh its only 97% of the frequency that can blind" says the manufacturers.
laserdaveb
not rated yet Apr 21, 2009
what is the bandwidth relative to a particular chemical structure?
mados123
not rated yet Apr 21, 2009
"Yeah and then we all go blind from lasers shining in our eyes."

Not the case because by the time it reaches your eye, it will be diverged. Unless, of course, you open the projector/TV while its on and place your eyes in the light path. I wouldn't recommend doing that for other light sources as well.
RayCherry
not rated yet Jul 29, 2009
Also more energy efficient than OLEDs?