Museum specimens aid conservation effort in Madagascar

Apr 16, 2009
This is the chameleon species Furcifer petteri from Madagascar, which was part of the new research. Credit: C. Raxworthy

There is a new tool for those developing conservation strategies for threatened species and landscapes: museum specimens. Richard Pearson and Christopher Raxworthy of the American Museum of Natural History dusted off a number of collections from Madagascar and used the location information associated with each species to test different ideas regarding the evolution of locally distributed endemism (unique species confined to small regions). The research paper published this month in Evolution found support for alternative hypotheses, suggesting that multiple processes develop local endemism. This improved knowledge of the processes that lead to endemism can help to identify priorities in conservation planning.

"Museum records can be used for purposes, especially because they tie together generations of data," says Pearson, a Scientist at the Museum's Center for Biodiversity and Conservation. "Madagascar is a unique natural laboratory for this project because of the large amount of local endemism and because the government's decision to set aside land has spurred an effort to prioritize the location of reserves within the landscape."

Madagascar is an island nation in the Indian Ocean that has been completely isolated from other land masses for the last 80 million years. Isolation has led to a high number of unique species like chameleons (Furcifer petteri), lemurs (Lemur catta), and day geckos (Phelsuma madagascariensis) which, in turn, has led Madagascar to be labeled a biodiversity "hotspot" by conservation groups. The Malagasy government pledged to set aside 10 percent of the land for conservation purposes as part of the 2003 World Parks Congress in Durban. Previous research papers have attempted to use species location records to determine which areas of the island would conserve the largest number of species.

The current research project used over 1,700 museum records that describe the distribution of 73 species of , geckos, and chameleons. The distributions of species were plotted and used to distinguish the fit of two different hypotheses, one focused on watersheds and the other on climate types. The "watershed" hypothesis suggests that geographic isolation drives evolution: species move up and down the watershed—and adapt or go extinct—as climate changes. The "climate" hypothesis, on the other hand, suggests that speciation occurs when species become specialized to particular climatic environments. Species adaptation along climatic gradients does not require strict geographic isolation. The two hypotheses address a fundamental question in biology: does speciation occur allopatrically (within isolated watersheds) or parapatrically (along environmental gradients).

Each hypothesis predicted very different patterns of local endemism. But when comparing the two hypotheses, Pearson and Raxworthy found that 41 species across all taxa fit the predicted distribution of one or both hypotheses and that 32 species were not allied with either idea. This suggests that multiple biogeographic criteria should be built into conservation prioritizations. For the evolution of some species, watersheds might be very important, but climate gradients are also important—and both need to be conserved.

"In this paper, we put two hypotheses head to head and found that there is an element of truth to each one," says Pearson. "There's no silver bullet or overarching answer for conservation prioritization. The situation is a lot more complex."

Raxworthy, Associate Curator in the Department of Herpetology, agrees. "Our analysis shows that both climate change and the climatic diversity drive speciation in Madagascar. This result might help solve one of the great mysteries: why are so many unique confined to just small regions on this island."

Source: American Museum of Natural History

Explore further: Rock-paper-scissors model helps researchers demonstrate benefits of high mutation rates

add to favorites email to friend print save as pdf

Related Stories

Saving frogs before it's too late

May 06, 2008

With nearly one-third of amphibian species threatened with extinction worldwide, fueled in part by the widespread emergence of the deadly chytrid fungus, effective conservation efforts could not be more urgent. In a new article ...

Genetic study finds treasure trove of new lizards

Mar 04, 2009

( -- University of Adelaide research has discovered that there are many more species of Australian lizards than previously thought, raising new questions about conservation and management of Australia's ...

Recommended for you

Plants with dormant seeds give rise to more species

Apr 18, 2014

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers successfully clone adult human stem cells

Apr 18, 2014

( —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

( —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Growing app industry has developers racing to keep up

Smartphone application developers say they are challenged by the glut of apps as well as the need to update their software to keep up with evolving phone technology, making creative pricing strategies essential to finding ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.