New DNA sensors could identify cancer using graphene

Apr 13, 2009
This is DNA-tethered graphene. Credit: Kansas State University department of chemical engineering

Kansas State University engineers think the possibilities are deep for a very thin material.

Vikas Berry, assistant professor of chemical engineering, is leading research combining biological materials with graphene, a recently developed carbon material that is only a single atom thick.

"The biological interfacing of graphene is taking this material to the next level," Berry said. "Discovered only four years ago, this material has already shown a large number of capabilities. K-Staters are the first to do bio-integrated research with graphene."

To study graphene, researchers rely on an to help them observe and manipulate these single atom thick carbon sheets.

"It's a fascinating material to work with," Berry said. "The most significant feature of graphene is that the electrons can travel without interruptions at speeds close to that of light at room temperature. Usually you have to go near zero Kelvin -- that's about 450 degrees below zero Fahrenheit -- to get electrons to move at ultra high speeds."

One of Berry's developments is a graphene-based DNA sensor. When electrons flow on the graphene, they change speed if they encounter DNA. The researchers notice this change by measuring the . The work was published in .

"Most DNA sensors are optical, but this one is electrical," Berry said. "We are currently collaborating with researchers from Harvard Medical School to sense in blood."

Another area he is exploring is loading graphene with antibodies and flowing bacteria across the surface.

"Most researchers focus on pristine graphene, but we're making it dirty," he said.

Berry and Nihar Mohanty, a graduate student in chemical engineering, used a type of bacteria commonly found in rice and interfaced it with graphene. They found that the graphene with tethered antibodies will wrap itself around an individual , which remains alive for 12 hours.

Berry said that possible applications include a high-efficiency bacteria-operated battery, where by using geobater, a type of bacteria known to produce , can be wrapped with to produce electricity. The research was presented at the annual American Physical Society conference in Pittsburgh and the American Institute for Chemical Engineers conference in Philadelphia.

"Materials science is an incredible field with several exploitable quantum effects occurring at molecular scale, and biology is a remarkable field with a variety of specific biochemical mechanisms," Berry said. "But for the most part the two fields are isolated. If you join these two fields, the possibilities are going to be immense. For example, one can think of a bacterium as a machine with molecular scale components and one can exploit the functioning of those components in a material device."

For his doctoral research, Berry used bacteria to make a humidity sensor.

"That was only possible through combining materials science with biological science," he said.

Another area of his current research is compressing and stretching molecular-junctions between nanoparticles. Berry said that his group has developed a molecular-spring device where they can compress and stretch molecules, which then act like springs, allowing researchers to study how they relax back. He said that this technology could be used to create molecular-timers in which the spring action from a decompressed molecule on a chip could trigger a circuit, for instance.

Berry said for stretching the molecules, Kabeer Jasuja, a doctoral student in chemical engineering, came up with the idea to place the device on a centrifuge to stretch the molecules with centrifugal force.

The work was published in the journal Small.

Source: Kansas State University (news : web)

Explore further: Relaxing DNA strands by using nano-channels

add to favorites email to friend print save as pdf

Related Stories

Graphene sniffs out dangerous molecules

Jul 30, 2007

Researchers at the University of Manchester have used the world’s thinnest material to create sensors that can detect just a single molecule of a toxic gas.

Could Graphene Replace Semiconductors?

Sep 08, 2008

(PhysOrg.com) -- “People want a faster computer chip,” Philip Kim tells PhysOrg.com. “And it needs to be smaller. But in order to increase the speed of the chip, or to get it smaller, we are approaching a point where ...

Graphene oxide paper could spawn a new class of materials

Jul 25, 2007

Nearly 2,000 years ago, the discovery of paper revolutionized human communication. Now researchers at Northwestern University have fabricated a new type of paper that they hope will create a revolution of its own -- and while ...

Recommended for you

Cut flowers last longer with silver nanotechnology

9 hours ago

Once cut and dunked in a vase of water, flowers are susceptible to bacterial growth that shortens the length of time one has to enjoy the blooms. A few silver nanoparticles sprinkled into the water, might be the answer to ...

Relaxing DNA strands by using nano-channels

Aug 20, 2014

A simple and effective way of unravelling the often tangled mass of DNA is to 'thread' the strand into a nano-channel. A study carried out with the participation of the International School for Advanced Studies ...

Сalculations with nanoscale smart particles

Aug 19, 2014

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards ...

Attack Ebola on a nanoscale

Aug 15, 2014

(Phys.org) —The Ebola virus outbreak in West Africa has claimed more than 900 lives since February and has infected thousands more. Countries such as Nigeria and Liberia have declared health emergencies, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Apr 13, 2009
Interesting work! Just remember when you speak of "electrical" you are TALKING ABOUT ELECTRONS! Their mass and speed is "temperature" and "volts"!
At zero Kelvin you have neither!