Scientists develop method for comprehensive proteome analysis

Apr 08, 2009

Investigators at Burnham Institute for Medical Research (Burnham) have deciphered a large percentage of the total protein complement (proteome) in Schizosaccharomyces pombe (S. pombe) fission yeast.

Laurence Brill, Khatereh Motamedchaboki, Ph.D. and lead investigator Dieter Wolf, Ph.D., developed the novel method, used to identify 4,600 proteins in the organism, using an array of sophisticated techniques. The research was published online on March 9 in the journal Methods.

"Analysis of the proteome of an organism tells us so much more than simple DNA sequence analysis," said Dr. Wolf. "Proteome analysis gives us a snapshot of what proteins are being expressed in the cell at any given point in time. This can tell us how expression changes in response to certain stimuli and in disease states, which may help identify new biomarkers for diseases. We are now applying the methodology to protein profiling of human in collaboration with Burnham's stem cell program director, Evan Snyder."

The method developed by Burnham scientists involved digestion of the proteins into smaller , then separation of the peptides based on electrostatic charge using strong anionic exchange chromatography. The peptides were further separated by molecular weight using high pressure liquid chromatography. Each of the individual peptides was detected and identified using mass spectrometry and database analysis. DNA analysis of the yeast's genome predicts 5027 proteins. The team identified 4,600 proteins, which is not quite the entire proteome. The remaining 400 are only expressed during S. pombe's mating state.

S. pombe is often used as a model organism to study DNA damage response and repair, cell division, stress responses and other aspects of cellular biology.

Source: Burnham Institute

Explore further: Fighting bacteria—with viruses

add to favorites email to friend print save as pdf

Related Stories

Yale scientists map cell signaling network

Nov 30, 2005

Yale University scientists have mapped, for the first time, the proteins and kinase signaling network that control how cells of higher organisms operate.

Plague proteome reveals proteins linked to infection

Nov 22, 2006

Recreating growth conditions in flea carriers and mammal hosts, Pacific Northwest National Laboratory scientists have uncovered 176 proteins and likely proteins in the plague-bacterium Yersinia pestis whose numbers rise ...

New NIST reference material for peptide analysis

May 25, 2007

The National Institute of Standards and Technology (NIST) has issued its first-ever reference material designed to improve the performance and reliability of experiments to measure the masses and concentrations of peptides ...

Stem cell research uncovers mechanism for type 2 diabetes

Feb 12, 2009

Taking clues from their stem cell research, investigators at the University of California San Diego (UC San Diego) and Burnham Institute for Medical Research (Burnham) have discovered that a signaling pathway involved in ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0