Why certain fishes went extinct 65 million years ago

Mar 26, 2009
Fossil herrings from the Eocene Green River Formation of the western United States where Colorado, Utah and Nevada meet. Herrings are one of the small-bodied groups of bony fishes that survived the end-Cretaceous extinction and persist to this day in marine environments. Credit: Photo by Matt Friedman

Large size and a fast bite spelled doom for bony fishes during the last mass extinction 65 million years ago, according to a new study to be published March 31, 2009, in the Proceedings of the National Academy of Sciences.

Today, those same features characterize large predatory bony fishes, such as tuna and billfishes, that are currently in decline and at risk of themselves, said Matt Friedman, author of the study and a graduate student in at the University of Chicago.

"The same thing is happening today to ecologically similar fishes," he said. "The hardest hit species are consistently big predators."

Studies of modern fishes demonstrate that large is linked to large prey size and low rates of population growth, while fast-closing jaws appear to be adaptations for capturing agile, evasive prey—in other words, other fishes. The provides some remarkable evidence supporting these estimates of function: with preserved stomach contents that record their last meals.

When an asteroid struck the earth at the end of the Cretaceous about 65 million years ago, the resultant impact clouded the earth in soot and smoke. This blocked photosynthesis on land and in the sea, undermined food chains at a rudimentary level, and led to the extinction of thousands of species of flora and fauna, including dinosaurs.

The fossil fish on the left is not related to the modern swordfish on the right, which is for sale at a fish market. Nevertheless, the swordfish developed a size and shape similar to the fossil fish and appears to be vulnerable to extinction for some of the same reasons that the fossil form was vulnerable: it is a large predator. Credit: Photo by Matt Friedman

Scientists had speculated that during that interval large predatory fishes might have been more likely than other fishes to go extinct because they tended to have slowly increasing populations, live more spread out, take longer to mature, and occupy at the tops of food chains. Today, ecologically similar fishes appear to be the least able to rebound from declining numbers due to overfishing.

To build the database he needed to test this prediction, Friedman traveled around the world measuring the body size and of 249 genera of fossil fishes that lived during the late Cretaceous. These kinds of direct measurements are possible in fossil fishes because many are represented by complete, articulated individuals. This is unlike the fossil record of most other vertebrates, where bones, teeth and other parts of the skeleton are often scattered and found in isolation.

This study is the first to test this theory with hard data and to quantify the relationship between body size, jaw function and vulnerability of fishes during the Cretaceous extinction, according to Friedman.

"Anyway you sliced it, the data showed that if you were a big fish with a fast bite you were toast," he said.

Ironically, today's large fishes with fast bites evolved relatively shortly after the end-Cretaceous extinction, apparently filling the functional and ecological roles vacated by the victims of that mass extinction. Although the two groups of fishes are not related to each other, their fates may end up being similar.

The paper is called "Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction" and will appear in issue 13 of PNAS. In it, Friedman describes the results of his study as robust because the large-bodied, predatory fishes that are disproportionately devastated also have the best fossil records. "In other words, we can be convinced that these forms really do die off here, and that their disappearance can't be chalked up to a lousy fossil record," Friedman noted.

Nevertheless, fossil fishes are not well studied because paleontologists, as a group, tend to be drawn to other animals, such as dinosaurs. Therefore, many large-scale patterns of fish evolution remain unclear.

The fossil fishes included in the study are diverse in form, and range in length from about 20 feet to less than one inch.

"This study demonstrates that fossil datasets are germane to modern diversity and evolution by allowing us to calibrate what characteristics might relate to extinction vulnerability today," Friedman said. "Echoes of the end-Cretaceous extinction reverberate 65 million years later."

Source: University of Chicago Medical Center

Explore further: An increase in temperature by 2050 may be advantageous to the growth of forage plants

add to favorites email to friend print save as pdf

Related Stories

Chinese report important fish fossil find

May 05, 2006

Chinese researchers say a newly discovered fish species that lived more than 400 million years ago may represent a bridge between two vertebrate lineages.

Discovery of 450 Million Years Old 'Missing Link'

Apr 27, 2005

A 15-year search for fossils in Africa has led to the discovery of eight fish specimens that are 450 million years old – 50 million years older than any previous fish fossil on the continent and amongst the oldest in the ...

How fishes conquered the ocean

Jan 24, 2007

Scientists at the University of Bergen, Norway have deduced how bony fishes conquered the oceans by duplicating their yolk-producing genes and filling their eggs with the water of life – the degradation of yolk proteins ...

New piece in the jigsaw puzzle of human origins

Jan 15, 2009

In an article in today's Nature, Uppsala researcher Martin Brazeau describes the skull and jaws of a fish that lived about 410 million years ago. The study may give important clues to the origin of jawed vertebrates, and th ...

Recommended for you

Where have all the swallows gone?

18 hours ago

Extinction: the permanent loss of a species. It is deeply troubling—and scientists and birdwatchers are ringing the alarm about a bird species that only a few decades ago was widespread and very common.

Wildlife hospitals save 16,000 animals in four years

20 hours ago

Birds are the most commonly rescued wildlife in Queensland, with the laughing kookaburra among our hardiest species, according to new research from The University of Queensland's Gatton Campus.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

el_gramador
not rated yet Mar 27, 2009
I wonder if extrapolated to humans with the constantly increasing population and omnivorous prey habits, would lead to anything similar? I know fish can't escape life underwater, but humans have that extra bit of finesse to figure out how.