When intestinal bacteria go surfing

Mar 19, 2009

The bacterium Escherichia coli is part of the healthy human intestinal flora. However, E. coli also has pathogenic relatives that trigger diarrhea illnesses: enterohemorrhagic E.coli bacteria. During the course of an infection they infest the intestinal mucosa, causing injury in the process, in contrast to benign bacteria.

The EHECs adhere to the surface of the mucosal cells and alter them internally: a part of the cellular supportive - the actin skeleton - is rearranged in such a manner that the beneath the forms plinth-like growths, so-called pedestals. The bacteria are securely anchored to this pedestal; the pedestals, in contrast, are mobile. This enables the bacteria, seated upon them, to surf over the cell surface and reproduce upon it, without being flushed from the . But how do the bacteria bring the host cells to convert the actin skeleton? Researchers at the Helmholtz Centre for Infection Research (HZI) have now identified the that leads to the formation of this pedestal.

"Prerequisite for this signal pathway is a special secretion system - a sort of molecular syringe, through which the bacteria insert entire proteins in the ," explains Theresia Stradal, head of the Signal Transduction and Motility research group at HZI. Two factors, Tir and EspFU, are brought into the host cell from the bacterium for pedestal formation. Following this, the host cell presents Tir on its surface; the bacterium recognises "its" molecule Tir and adheres to the host cell. EspFU then triggers the signal for local actin conversion.

"It has been unclear thus far how the two bacterial effectors Tir and EspFU enter into contact with one another in the host cell," says Theresia Stradal. Her research group has now found the missing link: "The molecule comes from the host cell, is called IRSp53 and gathers on the cell surface, directly beneath the bacteria sitting on it," explains cell biologist Markus Ladwein, who is also involved in the project. IRSp53, then, establishes the connection between Tir and EspFU. It ensures that actin conversion is concentrated locally. Together with the biochemist Dr. Stefanie Weiß, a former post-graduate student with the research group, Markus Ladwein also provided the counter evidence: "Cells in which IRSp53 is lacking are no longer able to form pedestals for the bacteria."

The signal pathway clarified by the Braunschweig researchers - published today in the journal Cell Host & Microbe - is a good example of how pathogenic bacteria develop progressively with their host. With the aid of bacterial factors, they therefore manage to simulate signals and set in motion complex processes in the host, which they then abuse for their own purposes.

More information: IRSp53 Links the Enterohemorrhagic E. coli Effectors Tir and EspFU for Actin Pedestal Formation. Stefanie M. Weiss, Markus Ladwein, Dorothea Schmidt, Julia Ehinger, Silvia Lommel, Kai Städing, Ulrike Beutling, Andrea Disanza, Ronald Frank, Lothar Jänsch, Giorgio Scita, Florian Gunzer, Klemens Rottner, and Theresia E.B. Stradal. Cell Host Microbe. 2009 Mar 19;5(3):244-58.

Source: Helmholtz Association of German Research Centres

Explore further: Environmental pollutants make worms susceptible to cold

add to favorites email to friend print save as pdf

Related Stories

Scientists develop fast-working biosensor

Feb 23, 2006

University of Rochester Medical Center scientists have demonstrated a new technology that accurately and rapidly detects the meat-spoiling and sometimes dangerous E. coli bacteria. The unique technology uses a protein from t ...

Magnetic nanoparticles detect and remove harmful bacteria

Nov 19, 2007

Researchers in Ohio report the development of magnetic nanoparticles that show promise for quickly detecting and eliminating E. coli, anthrax, and other harmful bacteria. In laboratory studies, the nanoparticles helped detect ...

Recommended for you

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

A new quality control pathway in the cell

Sep 18, 2014

Proteins are important building blocks in our cells and each cell contains millions of different protein molecules. They are involved in everything from structural to regulatory aspects in the cell. Proteins are constructed ...

User comments : 0