New combustion strategy accelerates hydrogen-engine development

Mar 16, 2009 by Jared Sagoff
New combustion strategy accelerates hydrogen-engine development
Argonne automotive engineer Henning Lohse-Busch puts an engine through its paces on Argonne's Modular Automotive Technology Testbed (MATT), a platform that allows different engine components to be observed and evaluated as they operate in a complete vehicular system.

(PhysOrg.com) -- Car manufacturers aspire to create hydrogen-powered vehicles that could one day allow energy-efficient, cost-effective travel that emits no greenhouse gases or other pollutants. To further that effort, scientists at the U.S. Department of Energy's Argonne National Laboratory have devised new combustion strategies for hydrogen engines.

Researchers in Argonne's Center for Transportation Research have built the Modular Automotive Technology Testbed (MATT), an Erector Set-like platform for automotive powertrains in which engineers can swap in and out different engines, transmissions and other core powertrain components. By using MATT, Argonne researchers gain the ability to test a 4-cylinder on the standard drive cycles.

"One of the major advantages of MATT is that it allows us to separately test and benchmark individual components as they work in a system," said Argonne engineer Henning Lohse-Busch.

As they put the engine through its paces, Argonne's researchers evaluate the economy and emissions generated by different strategies. Lohse-Busch and his colleagues developed an optimal variable air-fuel ratio combustion strategy that allows a hydrogen engine to run efficiently and cleanly in a conventional vehicle. According to Lohse-Busch, these hydrogen-burning combustion engines represent the "bridging technology to the ."

Unlike hydrogen fuel cells, which convert hydrogen to electricity through an that yields no pollutants, hydrogen internal combustion engines can produce nitrogen oxides (NOx), which contribute to global climate change. Due to the wide flammability range of hydrogen, a can run at extremely high air-fuel ratios. All else being equal, the leanest combustion allows the engine to run efficiently and reduces emissions. However, the leaner combustion dramatically reduces the power output of the engine.

In his work on MATT, Lohse-Busch determined that by varying the air-hydrogen ratio, he could reduce the trade-off between fuel economy, low-NOx emissions and power for these engines. "With a constant air-fuel ratio combustion strategy, you have to sacrifice fuel economy, high performance or low emissions," he said. "The variable combustion strategy that we developed for hydrogen engines resulted in the best fuel economy while achieving very low emissions even without an exhaust after-treatment system."

In the future, researchers in the Center for Transportation Research hope to use MATT to marry the hydrogen-burning internal combustion engine with a hybrid propulsion system. This approach, Lohse-Busch explained, would enable Argonne researchers to reap more benefits from both technologies. "With the additional power supplied by a battery," he said,w"e can supply the hydrogen engine with leaner fuel streams, enabling the engine to run more efficiently and cleanly."

Provided by Argonne National Laboratory

Explore further: A 3D-printed laptop prepared for crowdfunding campaign

add to favorites email to friend print save as pdf

Related Stories

Government awards hydrogen engine contract

Nov 09, 2006

The U.S. Department of Energy has awarded a contract to Michigan's Energy Conversion Devices Inc. to develop small hydrogen internal combustion engines.

Engineer works to clean and improve engine performance

Sep 17, 2008

The five engines in Song-Charng Kong's Iowa State University laboratory have come a long way since Karl Benz patented a two-stroke internal combustion engine in 1879. There are fuel injectors and turbochargers ...

Hydrogen-powered lawnmowers?

Jan 23, 2007

In a breakthrough that could make fuel cells practical for such small machines as lawnmowers and chainsaws, researchers have developed a new mechanism to efficiently control hydrogen fuel cell power.

Low-emission, high-performance engine for future hybrids

Sep 15, 2008

In an advance toward introduction of an amazing new kind of internal combustion engine, researchers in China are reporting development and use of a new and more accurate computer model to assess performance ...

Recommended for you

A 3D-printed laptop prepared for crowdfunding campaign

9 hours ago

Using PLA filament, a small London-based team have managed to achieve the 3D printing of their own Raspberry-Pi-based laptop, with a battery life of six to eight hours and Wi-Fi enabled out of the box. They ...

Wireless sensor transmits tumor pressure

Sep 20, 2014

The interstitial pressure inside a tumor is often remarkably high compared to normal tissues and is thought to impede the delivery of chemotherapeutic agents as well as decrease the effectiveness of radiation ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Shootist
5 / 5 (1) Mar 17, 2009
"one day allow energy-efficient, cost-effective travel that emits no greenhouse gases or other pollutants.

Violates conservation of matter and energy. Oxidize hydrogen and what do you get? Water. Water is a "greenhouse gas" several orders of magnitude greater than CO2.