World first as scientists grow microtubes from crystals (Video)

Mar 02, 2009
The microtubes were shown to be water-tight by injecting a fluorescent dye into them. Scientists can also control the direction of growth to create any pattern they choose.

(PhysOrg.com) -- In a world-first, scientists at the University of Glasgow have grown micro-tube structures from crystals of inorganic compounds.

The discovery - published in Nature Chemistry’s April edition - has major implications for the micro-fluidics industry with applications in medical sensing - through so called lab-on-a-chip devices - being one of the major prospects.

This video is not supported by your browser at this time.

The tiny tubes were observed sprouting from crystals of Keggin-net, a type of polyoxometalate which comprises large clusters of metal and oxygen atoms, seconds after they were immersed in water containing positively-charged organic molecules - or cations.

Scientists were able to control the rate of tube growth, by varying the concentration of the cation solution, and the direction of growth by altering the polarity of electrodes placed around the crystals. By injecting a fluorescent dye into the tubes they demonstrated the tubes were also water tight.

Professor Leroy Cronin, who leads the research group that made the discovery, in the Department of Chemistry, University of Glasgow, said: “The phenomenon we have discovered is quite amazing. It presents the possibility of growing micro-fluidic channels in any pattern you want, controlling the rate of growth and direction like an Etch-a-Sketch, and then flowing liquids through the tubes. It might also provide some intriguing insights into the emergence of life.”

When severed, the tubes, which can grow at rates of between one micron to more than 100 microns per second, continued to grow from the point where they were cut. They can also negotiate obstacles and merge with each other. Tube diameters were as small as 20 microns (for comparison, a human hair is 100 microns wide). Tubes many millimetres long were observed before growth ceased when the crystal was nothing but an empty shell.

The research team will publish a recipe for growing the microtubes so that others can experiment with different materials. Different polyoxometalates will vary the chemical properties of the tubes enabling them to react with different cation solutions presenting various possibilities for applications in medical sensing, for example.

Prof Cronin said: “It’s an intriguing process and one which might have many exciting applications in making micro-fluidic devices. Because it appears that many types of polyoxometalates can be used to grow tubes, they could be designed to have a variety of functions and applications. We intend to research further the mechanism of tube growth and formation and demonstrate even higher levels of control.”

More information: A paper on the discovery - ‘Spontaneous assembly and real-time growth of micro-metre-scale tubular structures from polyoxometalate-based inorganic solids’ - will be published in April in Nature Chemistry and online at www.nature.com/chemistry .

Provided by University of Glasgow

Explore further: Recycling industrial waste water: Scientists discover a new method of producing hydrogen

add to favorites email to friend print save as pdf

Related Stories

Morphing is one way to make aircraft more efficient

Mar 10, 2014

It is estimated that by 2050 there will be a six-fold increase in the number of flights there are today. This is going to be an environmental problem, and it will need radical change in aircraft design to ...

Recommended for you

A greener source of polyester—cork trees

20 hours ago

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

A beautiful, peculiar molecule

23 hours ago

"Carbon is peculiar," said Nobel laureate Sir Harold Kroto. "More peculiar than you think." He was speaking to a standing-room-only audience that filled the Raytheon Amphitheater on Monday afternoon for the ...

Metals go from strength to strength

Apr 15, 2014

To the human hand, metal feels hard, but at the nanoscale it is surprisingly malleable. Push a lump of metal with brute force through a right-angle mould or die, and while it might look much the same to the ...

User comments : 0

More news stories

Breakthrough points to new drugs from nature

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

A greener source of polyester—cork trees

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...