World first as scientists grow microtubes from crystals (Video)

Mar 02, 2009
The microtubes were shown to be water-tight by injecting a fluorescent dye into them. Scientists can also control the direction of growth to create any pattern they choose.

(PhysOrg.com) -- In a world-first, scientists at the University of Glasgow have grown micro-tube structures from crystals of inorganic compounds.

The discovery - published in Nature Chemistry’s April edition - has major implications for the micro-fluidics industry with applications in medical sensing - through so called lab-on-a-chip devices - being one of the major prospects.

This video is not supported by your browser at this time.

The tiny tubes were observed sprouting from crystals of Keggin-net, a type of polyoxometalate which comprises large clusters of metal and oxygen atoms, seconds after they were immersed in water containing positively-charged organic molecules - or cations.

Scientists were able to control the rate of tube growth, by varying the concentration of the cation solution, and the direction of growth by altering the polarity of electrodes placed around the crystals. By injecting a fluorescent dye into the tubes they demonstrated the tubes were also water tight.

Professor Leroy Cronin, who leads the research group that made the discovery, in the Department of Chemistry, University of Glasgow, said: “The phenomenon we have discovered is quite amazing. It presents the possibility of growing micro-fluidic channels in any pattern you want, controlling the rate of growth and direction like an Etch-a-Sketch, and then flowing liquids through the tubes. It might also provide some intriguing insights into the emergence of life.”

When severed, the tubes, which can grow at rates of between one micron to more than 100 microns per second, continued to grow from the point where they were cut. They can also negotiate obstacles and merge with each other. Tube diameters were as small as 20 microns (for comparison, a human hair is 100 microns wide). Tubes many millimetres long were observed before growth ceased when the crystal was nothing but an empty shell.

The research team will publish a recipe for growing the microtubes so that others can experiment with different materials. Different polyoxometalates will vary the chemical properties of the tubes enabling them to react with different cation solutions presenting various possibilities for applications in medical sensing, for example.

Prof Cronin said: “It’s an intriguing process and one which might have many exciting applications in making micro-fluidic devices. Because it appears that many types of polyoxometalates can be used to grow tubes, they could be designed to have a variety of functions and applications. We intend to research further the mechanism of tube growth and formation and demonstrate even higher levels of control.”

More information: A paper on the discovery - ‘Spontaneous assembly and real-time growth of micro-metre-scale tubular structures from polyoxometalate-based inorganic solids’ - will be published in April in Nature Chemistry and online at www.nature.com/chemistry .

Provided by University of Glasgow

Explore further: Developing the battery of the future

add to favorites email to friend print save as pdf

Related Stories

NASA, partners target megacities carbon emissions

Sep 24, 2014

Driving down busy Interstate 5 in Los Angeles in a nondescript blue Toyota Prius, Riley Duren of NASA's Jet Propulsion Laboratory, Pasadena, California, is a man on a mission as he surveys the vast urban ...

Project launched to study evolutionary history of fungi

Sep 22, 2014

The University of California, Riverside is one of 11 collaborating institutions that have been funded a total of $2.5 million by the National Science Foundation for a project focused on studying zygomycetes – ancient li ...

Microalgae – the factories of the future

Sep 09, 2014

Biology professor Ralf Kaldenhoff is making microalgae fit for industry. The microorganisms could produce a variety of products from carbon dioxide and light.

Recommended for you

Developing the battery of the future

6 hours ago

The search for the next generation of batteries has led researchers at the Canadian Light Source synchrotron to try new methods and materials that could lead to the development of safer, cheaper, more powerful, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.