Discovery of ionic elemental crystal against chemical intuition

Jan 29, 2009

An ETH Zurich researcher has developed a computational method for predicting the structure of materials. He used it to solve the structure of a newly synthesized form of pure boron that displays some unusual physical properties and brings a surprise: it is partially ionic.

The new structure can be viewed as a NaCl-type structure, with anionic and cationic positions occupied by two different clusters of boron atoms (B12 and B2). The difference of the electronic properties of these clusters brings about charge transfer, making this material a partially ionic boron boride (B2)δ+(B12)δ-. Results have been published in today's "Nature" online magazine.

Boron is the chemical element most sensitive to impurities. This enhanced sensitivity makes experimental studies of this element very difficult. However, with the discovery of a new, superhard phase of the element, the theorists and experimentalists involved in the research have now come a big step closer to understanding boron. A separate publication by the authors in the "Journal of Superhard Materials" demonstrated that the new phase is superhard.

Independently synthesized

The new superhard material was independently synthesized by two researchers who eventually joined forces with crystallographer Artem Oganov's theoretical team. Initially, Jiuhua Chen, a material scientist at Florida International Univer-sity, and Vladimir Solozhenko, a physical chemist at the Centre National de la Recherche Scientifique (CNRS) in France, conducted experiments on extremely pure boron material, containing at most one foreign atom to one million boron atoms. They exposed this material to temperatures of over 1,500 degrees Cel-sius and to pressures in the range 12-30 GPa, similar to those found several hundreds of kilometers inside the Earth. Under these conditions both teams of experimentalists found a new polymorph of boron, but could not solve its struc-ture.

New method leads to breakthrough

Artem Oganov, working at ETH Zurich's Department of Material Science, has now developed a computational method for predicting the stable crystal structures of materials. His calculations reveal that in the new phase, boron atoms form two different kinds of nanoclusters: an icosahedron B12 consisting of twelve atoms and dumbbell B2 consisting of just two boron atoms.

These nanoclusters are arranged in the new phase of boron just as are sodium and chlorine ions in the rock salt (table salt) structure (see diagram). The new phase is predicted to remain stable to 89 GPa. The new knowledge obtained in this study allowed the researchers to propose a phase diagram for boron - the only light element whose phase diagram remained unknown until now.

Unusual properties identified

The unexpected structure of the new phase, which the authors called γ-B, con-tains atoms which are ionized, meaning that the electrons are distributed be-tween the atoms unevenly. According to classical textbooks, ionic bonds are possible only between two different elements, such as sodium and chlorine in table salt. But in the new structure ionic bonds occur between atoms of the same element, though belonging to two kinds of nanoclusters. This ionicity leads to unusual for an element phenomena in dielectric properties, lattice dy-namics, and anomalous electronic properties. Additional experiments carried out by the researchers also show that the new phase is superhard.

Oganov and his colleagues expect that forms of other elements, such as carbon heterofullerites, might display charge transfer and partial ionicity. Now a profes-sor at State University of New York at Stony Brook (USA), Oganov anticipates that sooner or later applications will be developed which are based on ionic elements. These applications could be based on switching on or off the anoma-lous properties (for example, strong infrared absorption) possessed by ionic elements - such properties will display dramatic changes as a result of pres-sure- or temperature-induced phase transitions. In addition, interesting effects related to superconductivity may appear as well.

Paper reference: www.nature.com/nature/journal/vaop/ncurrent/full/nature07736.html

Source: ETH Zurich/Swiss Federal Institute of Technology

Explore further: After 13 years, progress in pitch-drop experiment (w/ video)

add to favorites email to friend print save as pdf

Related Stories

Scientists probe the next generation of 2-D materials

Apr 03, 2014

As the properties and applications of graphene continue to be explored in laboratories all over the world, a growing number of researchers are looking beyond the one-atom-thick layer of carbon for alternative materials that ...

Making synthetic diamond crystals in a plasma reactor

Mar 21, 2014

Synthetic diamond crystals are of interest to many industrial sectors. Their unique properties make them a suitable material for numerous applications including lenses for high-energy laser optics, X-ray ...

Atomically thick metal membranes

Mar 14, 2014

For the first time researchers have shown that freestanding metal membranes consisting of a single layer of atoms can be stable under ambient conditions. This result of an international research team from ...

Spinning atoms in light crystals

Oct 30, 2013

(Phys.org) —After more than 40 years of intense research, experimental physicists still seek to explore the rich behaviour of electrons confined to a two-dimensional crystalline structure exposed to large ...

Researchers make graphene hybrid

Mar 01, 2010

Rice University researchers have found a way to stitch graphene and hexagonal boron nitride (h-BN) into a two-dimensional quilt that offers new paths of exploration for materials scientists.

Recommended for you

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

Probing metal solidification nondestructively

Apr 14, 2014

(Phys.org) —Los Alamos researchers and collaborators have used nondestructive imaging techniques to study the solidification of metal alloy samples. The team used complementary methods of proton radiography ...

Glasses strong as steel: A fast way to find the best

Apr 13, 2014

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

User comments : 0

More news stories

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...