Researchers develop camera for the blind

Jan 12, 2009 by Elizabeth A. Thomson
Elizabeth Goldring with the camera she developed. Photo / Donna Coveney

(PhysOrg.com) -- Elizabeth Goldring smiles as she shows a visitor photos she's taken — and can see — with her blind eye.

The demonstration comes more than 20 years after Goldring, a senior fellow at MIT’s Center for Advanced Visual Studies, and colleagues began work on a “seeing machine” that can allow some people who are blind or visually challenged to access the Internet, view the face of a friend and much more.

The team has moved from Goldring’s inspiration, a large diagnostic device costing some $100,000, to a $4,000 desktop version, to the current seeing machine, which is portable and inexpensive. “We can make one for under $500,” Goldring said.

Although the device can be connected to any visual source, such as a video camera or desktop computer, Goldring especially enjoys using it with a photo camera. “When someone has a diminished sense, the inability to express yourself with that sense can be frustrating,” she said. By taking photos, “I feel I’m able to express myself visually with my blind eye, and there’s value in that, I think.”

Further, “it’s light enough that I really want to take it with me when I go for a walk.” (Goldring, who is visually challenged, has enough sight in one eye to permit mobility.)

Goldring’s idea for the seeing machine began with a visit to her optometrist. At the time, she was completely blind.

To determine if she had any healthy retina left, technicians peered into her eyes with a scanning laser opthalmoscope, or SLO. With the machine they projected a simple image directly onto the retina of one eye, past the hemorrhages within the eye that contributed to her blindness.

She was indeed able to see the test image. So she asked if they could write the word “sun.” “And I was amazed that I was able to read a word!” Goldring said.

She went on to use the device for other visual experiences. For example, video of her doctor was transmitted through the SLO, and for the first time she saw his face.

But although the SLO held promise for the broader blind public, it had serious drawbacks — including its prohibitive cost. Goldring determined to develop a more practical, accessible machine.

She began collaborating with people such as Rob Webb, the SLO’s inventor and a senior scientist at the Schepens Eye Research Institute, Harvard University, and dozens of MIT students. Those involved in the current machine are Yifei Wu, an MIT senior who began the work as a freshman and has been instrumental in developing the seeing-machine camera; Brandon Taylor, a graduate student at the MIT Media Lab; and Quinn Smithwick, a postdoctoral associate in the same lab.

The portable device is relatively inexpensive in part because it replaces the laser of the SLO with light-emitting diodes (LEDs), another source of high-intensity light that is much cheaper.

Further, “everything in it is already mass-produced for other purposes,” said Taylor. He also noted that since the seeing-machine project began, “LCDs and other components have gotten much smaller and are readily available.”

The portable seeing machine is about five inches square and mounted on a flexible tripod that makes it easy to carry. A digital camera is attached to the top. The visual feed from the camera travels into the seeing machine to a Liquid Crystal Display (LCD) illuminated by LEDs. (This is the same kind of LCD common in cameras and TVs.)

The visual data is then focused into a single “point” that travels into the eye. “This is not magnification,” said Smithwick. “What makes this work is focusing the data into a tiny spot of light.”

What’s next? Goldring aims to show the new machine to other visually challenged people and looks forward to their feedback. Plans are underway to test it at the Low Vision Clinic at the Joslin Diabetes Center’s Beetham Eye Institute in Boston.

This work was supported by NASA and by MIT’s School of Architecture and Planning, Center for Advanced Visual Studies, Undergraduate Research Opportunities Program, and Council for the Arts.

Provided by MIT

Explore further: An innovative system anticipates driver fatigue in the vehicle to prevent accidents

add to favorites email to friend print save as pdf

Related Stories

Study provides insights into birds' migration routes

1 minute ago

By tracking hybrids between songbird species, investigators have found that migration routes are under genetic control and could be preventing interbreeding. The research, which is published in Ecology Le ...

Examining the causes of a devastating debris flow

2 minutes ago

Storm-triggered landslides cause loss of life, property damage, and landscape alterations. For instance, the remnants of Hurricane Camille in 1969 caused 109 deaths in central Virginia, after 600 mm of rain fell in mountainous ...

As numbers of gray seals rise, so do conflicts

21 hours ago

(AP)—Decades after gray seals were all but wiped out in New England waters, the population has rebounded so much that some frustrated residents are calling for a controlled hunt.

Recommended for you

Catching grease to cut grill pollution

Jul 21, 2014

A team of University of California, Riverside Bourns College of Engineering students have designed a tray that when placed under the grates of a backyard grill reduces by 70 percent the level of a harmful ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Adriab
not rated yet Jan 12, 2009
A really cool further development of this would be something a blind, or visual-impaired person, could wear to see.
visual
not rated yet Jan 13, 2009
there have been some prototypes of electrode grid arrays used to stimulate the retina or other parts of the optical nerve pathways, and it has been known that light could be used for the same purpose instead of physical electrodes. so the idea is nothing new. research has been going on in this field for a long time now.
it is very good to see someone actually taking the initiative to create a cheap and usable end-user device instead of just the theoretical research that's been going on till now... but the article skips on some important details about it. most importantly, what is its resolution and how precisely are the individual pixels aimed at the retina components?
also it doesn't seem like they have yet performed trials with long-term usage of the device, so it is unknown if it will be comfortable or even safe for permanent vision replacement. the very fact that the creator of the device herself prefers to use it for still photos instead of motion video speaks tons, i'm afraid. this is too unpolished, even amateur.