Measuring Nanoparticle Behavior in the Body Using MRI

Dec 23, 2008

(PhysOrg.com) -- One of the key steps in the development of any drug or imaging agent intended for human use is measurement of the adsorption, metabolism, and excretion of the drug. Quantifying this collection of pharmacological properties, known as ADME, is a challenging and time-consuming process that is even more difficult when the drug or imaging agent includes a nanoparticle as one of its components. But by taking advantage of the magnetic properties of one kind of nanoparticle, a team of investigators at Washington University in St. Louis has demonstrated that they can measure ADME quickly using magnetic resonance imaging (MRI).

Reporting its work in the journal Magnetic Resonance in Medicine, a team of investigators led by Samuel Wickline, M.D., and Gregory Lanza, M.D., members of the Siteman Cancer Center for Nanotechnology Excellence, describe how it used MRI to measure the ADME properties in rabbits of a nanoparticle designed to bind to a molecule known as avb3, which is found on newly growing blood vessels such as those that surround most solid tumors and around atherosclerotic plaques. For comparison purposes, they also measured ADME for an untargeted but otherwise identical nanoparticle. In both cases, the nanoparticles were loaded with up to 90,000 gadolinium molecules, a number that is easily detected by MRI.

Prior to scanning, the animals had been fed a cholesterol-rich diet designed to spur atherosclerosis. After injecting the nanoparticles into the animals, the investigators scanned the animals using a research MRI instrument every 30 minutes for the next 2.5 hours and then at 8.5, 12.5, and 24 hours. These scans focused on the animals’ aortas to determine ADME properties at the site that these nanoparticles were intended to target. The researchers also took blood samples at the time of imaging for calculating ADME using traditional methods.

Using standard modeling methods, the investigators were able to calculate multicompartmental pharmacokinetic parameters for the two different nanoparticles. Although the data showed that the overall blood levels of the two nanoparticles were nearly identical over the course of the experiment, the imaging results showed clearly that the amount of targeted nanoparticle at the aorta was double that of the untargeted nanoparticle, a result that is impossible to determine using standard ADME techniques. The researchers note that measuring local ADME characteristics with MRI, in addition to determining whole-body averaged results using blood samples, should become increasingly important as more targeted nanoparticles move toward human clinical trials.

This study, which was detailed in the paper “Nanoparticle pharmacokinetic profiling in vivo using magnetic resonance imaging,” was supported by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. Investigators from Philips Medical Systems and the University of Missouri Research Reactor also participated in this study. An abstract of this paper is available at the journal’s Web site. (dx.doi.org/doi:10.1002/mrm.21795)

Provided by National Cancer Institute

Explore further: Nanoparticles release drugs to reduce tooth decay

Related Stories

Dairy farms asked to consider breeding no-horn cows

7 hours ago

Food manufacturers and restaurants are taking the dairy industry by the horns on an animal welfare issue that's long bothered activists but is little known to consumers: the painful removal of budding horn ...

DARPA seeks new positioning, navigation, timing solutions

13 hours ago

The Defense Advanced Research Projects Agency (DARPA), writing about GPS, said: "The military relies heavily on the Global Positioning System (GPS) for positioning, navigation, and timing (PNT), but GPS access is easily blocked by methods such as jamming. In addition, many environments in which our mil ...

Recommended for you

Nanoparticles release drugs to reduce tooth decay

12 hours ago

Therapeutic agents intended to reduce dental plaque and prevent tooth decay are often removed by saliva and the act of swallowing before they can take effect. But a team of researchers has developed a way ...

Combining magnetism and light to fight cancer

17 hours ago

By combining, in a liposome, magnetic nanoparticles and photosensitizers that are simultaneously and remotely activated by external physical stimuli (a magnetic field and light), scientists at the Laboratoire ...

Scientists convert microbubbles to nanoparticles

Mar 30, 2015

Biomedical researchers led by Dr. Gang Zheng at Princess Margaret Cancer Centre have successfully converted microbubble technology already used in diagnostic imaging into nanoparticles that stay trapped in tumours to potentially ...

Designer's toolkit for dynamic DNA nanomachines

Mar 26, 2015

The latest DNA nanodevices created at the Technische Universitaet Muenchen (TUM)—including a robot with movable arms, a book that opens and closes, a switchable gear, and an actuator—may be intriguing ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.