Toshiba develops cost-effective 32nm CMOS platform technology by advanced single exposure lithography

Dec 18, 2008

Toshiba Corporation today announced a cost-effective 32nm CMOS platform technology that offers higher density and improved performance while halving the cost per function from 45nm technology.

The platform was achieved by application of advanced single exposure lithography and gate-first metal gate/high-K process technology. This technology enables a 0.124μm2 SRAM cell and a gate density of 3,650 gate/mm2. This SRAM cell is the smallest yet achieved in the 32nm generation. The platform technology is based on a 32nm process technology developed jointly with NEC Electronics Corporation.

Advanced semiconductor process migration faces challenges to achieve both cost competitiveness and enhanced performance for stricter design rules. This requires innovative technological optimization in lithography and patterning integration, materials, and device design.

Realizing the strict design rule in the 32nm generation was originally seen as requiring dual exposure technology in the lithography process, which would result in higher process costs due to increased process steps, and in degraded manufacturing yields owing to increased process dusts. Toshiba realized an architecture based on single exposure lithography by applying ArF immersion lithography with a NA 1.3 and over, and by optimizing the lithography illumination conditions.

The development work also demonstrated that application of a metal gate/high-K not only boosts transistor performance but also reduces threshold voltage mismatch, which affects stable operation of SRAM and logic circuits. In addition, a bent-shaped type cell was selected for layout optimization, which also contributed to reduce threshold voltage mismatch.

By adopting this approach, Toshiba realized a 32nm CMOS platform design that reduces cost per function by 50% from 45nm technology, an achievement that would have been impossible with conventional poly/SiON and double patterning.

Toshiba will further enhance development of the new platform.

The achievement was introduced today at the International Electron Devices meeting (IEDM) in San Francisco, CA.

Provided by Toshiba

Explore further: Ultralow-power RFID transponder chip in thin-film transistor technology on plastic

add to favorites email to friend print save as pdf

Related Stories

When science and art produce nanosculpture marvels

Nov 18, 2014

(Phys.org) —Quite a claim: a sculpture as the smallest creation of the human form in history. The sculptor, Jonty Hurwitz, said he loves the Internet. That is because, since the nanosculpture exhibit launch, ...

Team grows uniform nanowires

Nov 10, 2014

A researcher from Missouri University of Science and Technology has developed a new way to grow nanowire arrays with a determined diameter, length and uniform consistency. This approach to growing nanomaterials ...

Recommended for you

The state of shale

29 minutes ago

University of Pittsburgh researchers have shared their findings from three studies related to shale gas in a recent special issue of the journal Energy Technology, edited by Götz Veser, the Nickolas A. DeCecco Professor of Che ...

Coping with floods—of water and data

1 hour ago

Halloween 2013 brought real terror to an Austin, Texas, neighborhood, when a flash flood killed four residents and damaged roughly 1,200 homes. Following torrential rains, Onion Creek swept over its banks and inundated the ...

Fully automated: Thousands of blood samples every hour

1 hour ago

Siemens is supplying automation technology for the longest and one of the most cutting-edge sample processing lines in any clinical laboratory. The line, or automation track, 200 meters long, in Marlborough, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.