Clothing with a brain: 'Smart fabrics' that monitor health

Dec 08, 2008
Researchers have developed a cost-effective procedure of making disease-detecting wearable fabrics, "smart fabrics." Above are microscopic images of the E-fibers. Credit: Credit: American Chemical Society

Researchers in United States and China are reporting progress toward a simple, low-cost method to make "smart fabrics," electronic textiles capable of detecting diseases, monitoring heart rates, and other vital signs.

A report on these straight-out-of-science-fiction-fibers, made of carbon nanotubes, is scheduled for the December 10 issue of ACS' Nano Letters.

In the new study, Nicholas A. Kotov, Chuanlai Xu, and colleagues point out that electronic textiles, or E-textiles, already are a reality. However, the current materials are too bulky, rigid, and complex for practical use. Fabric makers need simpler, more flexible materials to make E-fibers practical for future applications, they say.

The scientists describe development of cotton fibers coated with electrolytes and carbon nanotubes (CNT) — thin filaments 1/50,000 the width of a single human hair. The fibers are soft, flexible, and capable of transmitting electricity when woven into fabrics.

In laboratory tests, the researchers showed that the new E-fibers could light up a simple light-emitting diode when connected to a battery. When coated with certain antibodies, the fibers detected the presence of albumin, a key protein in blood — a function that could be used to detect bleeding in wounded soldiers. The fabrics could also help monitor diseases and vital signs, they say.

Article: "Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring made by Carbon Nanotube Coating with Polyelectrolytes", pubs.acs.org/stoken/presspac/p… ll/10.1021/jf8016095

Provided by American Chemical Society

Explore further: Carbyne morphs when stretched: Calculations show carbon-atom chain would go metal to semiconductor

add to favorites email to friend print save as pdf

Related Stories

Ultra-thin wires for quantum computing

Jun 17, 2014

Take a fine strand of silica fiber, attach it at each end to a slow-turning motor, gently torture it over an unflickering flame until it just about reaches its melting point and then pull it apart. The middle ...

Recommended for you

An anti-glare, anti-reflective display for mobile devices?

Jul 16, 2014

If you've ever tried to watch a video on a tablet on a sunny day, you know you have to tilt it at just the right angle to get rid of glare or invest in a special filter. But now scientists are reporting in the journal ACS Ap ...

User comments : 0