The light syringe

Nov 24, 2008
The figure shows the fibre (the width of a human hair) delivering the light to cells adhered to a microscope slide.

(PhysOrg.com) -- Scientists at the University of St Andrews have developed a novel form of syringe, formed solely from light.

In a joint venture between the Schools of Physics & Astronomy and Biology, the St Andrews researchers have created a new technique that relies on a method called "photoporation".

This innovative method allows insoluble compounds such as genes and drugs to be injected into individual cells with the assistance of light. This will allow the potential detection of specific diseases and assist in the development of medication.

Professor Kishan Dholakia from the School of Physics & Astronomy and Dr Frank Gunn-Moore from the School of Biology led the work.

Professor Dholakia explained, "This method has, to date, been hampered as it was necessary to focus the laser beam to a very precise and extremely small point at the cell surface - a place hard to locate!

"However our novel technique uses a laser beam shape that does not spread: it stays narrow and elongated."

The discovery means that such 'exact focusing' is no longer necessary with the light syringe. Developed as a 'click and go' system, the approach will also be accessible to non-experts.

Dr Frank Gunn-Moore said, "The new form of laser has the ability to target any part of a cell without the need for exact focusing and is not stopped by objects placed in its way."

In a further break-through the scientists have also developed the first photoporation system that can be put on the end of a specially designed optic fibre.

The light is able to travel along a fibre the width of a human hair. This paves the way for the system to be devised for endoscopes, which are commonly used in hospitals as a way of seeing inside the body.

Dr Gunn-Moore continued, "We are very excited by these revolutionary new techniques. This method will allow us to build a machine that could be used with endoscopes. It will also allow us the potential to treat specific diseases and help in the testing of new drugs."

Provided by University of St Andrews

Explore further: Information storage for the next generation of plastic computers

add to favorites email to friend print save as pdf

Related Stories

Physicists create new nanoparticle for cancer therapy

Apr 16, 2014

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

Combs of light accelerate communication

Apr 14, 2014

Miniaturized optical frequency comb sources allow for transmission of data streams of several terabits per second over hundreds of kilometers – this has now been demonstrated by researchers of Karlsruhe ...

New light on novel additive manufacturing approach

Apr 11, 2014

(Phys.org) —For nearly a century, electrophoretic deposition (EPD) has been used as a method of coating material by depositing particles of various substances onto the surfaces of various manufactured items. ...

Recommended for you

How to test the twin paradox without using a spaceship

Apr 16, 2014

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

bredmond
2 / 5 (1) Nov 24, 2008
I hope this would work for acupuncture. Those needles hurt.

Would it be useful for brain scans? So we can then have non-invasive Brain to Computer interfaces. or am i totally reading this wrong.
superhuman
5 / 5 (4) Nov 25, 2008
It is invasive.

It solves the problem of delivering substances to cells, the cell membrane is impermeable to many compounds, so after the substance is added to their environment the cells are temporarily made permeable with chemicals or electric shock. It pokes holes in their membranes which allow the compounds to get through and which the cells are able to quickly seal off. This device offers a new way of doing that which allows one to target specific parts of single cells, which is very useful for studying how cells react to various substances.

The new form of laser has the ability to target any part of a cell without the need for exact focusing and is not stopped by objects placed in its way.


Lol, I think the authors got a little carried away here.
HenkZw
4 / 5 (1) Nov 25, 2008
superhuman,

I found your explanation a lot clearer than that of the authors of the article. OK, it pokes holes in the cell wall. I didn't find that in the article!
E_L_Earnhardt
not rated yet Nov 25, 2008
Avoid the cell. Focus on angiogenesis!
theophys
not rated yet Nov 28, 2008
I'm confused, how exactly does the light help? It seems like it's little more than the syringe equivilent to a guided missle.

More news stories

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Is Parkinson's an autoimmune disease?

The cause of neuronal death in Parkinson's disease is still unknown, but a new study proposes that neurons may be mistaken for foreign invaders and killed by the person's own immune system, similar to the ...