From one laying to another the female collembolan adapts its eggs to environmental constraints

Sep 22, 2008

Reproductive plasticity – the ability of individuals to modify their reproduction and the characteristics of their progeny according to environmental or social conditions – is a crucial factor in the demographics of animal populations, including man. Two scientists in the Laboratoire Écologie & Évolution (CNRS/Université Pierre et Marie Curie/École normale supérieure de Paris) have demonstrated the adaptive nature of the reproductive behavior of certain arthropods from one laying to another, in the same female.

Thomas Tully and Régis Ferrière, researchers in the Laboratoire Écologie & Évolution, studied populations of Collembola, one of the most ancient and abundant groups of arthropods on Earth. They showed that over the course of evolution, some Collembola populations have acquired an extraordinary ability to adjust their reproductive behavior when faced with abrupt environmental or social change.

From one laying to another, a female can adapt not only the number but the size of her eggs, so that the young will be more capable of surviving in their new environmental conditions. In a food-rich environment, females will tend to lay a larger number of smaller eggs. In a highly competitive environment, where individuals are numerous but food is less abundant, the eggs will be fewer in number but larger, thus allowing larger newborns to survive better under these difficult conditions.

Such flexibility constitutes a major adaptation, but the scientists also noted that the most plastic lines of Collembola were also those that experienced the earliest mortality. In this species, two strategies coexist in nature: plastic reproduction at the cost of reduced longevity, or a longer life without any great capacity for reproductive adjustment. Comparison of these two strategies, which diverged at an early stage in the evolutionary history of this species, suggests that accelerated aging could result not simply from more intense reproduction but also from a high level of plasticity and genetic potential for reproduction.

Citation: Reproductive Flexibility: Genetic Variation, Genetic Costs and Long-Term Evolution in a Collembola Thomas Tully & Régis Ferrière, PLoS One, 15 September 2008

Source: CNRS

Explore further: Dwindling wind may tip predator-prey balance

add to favorites email to friend print save as pdf

Related Stories

Alibaba's plan: Today, China. Tomorrow, the world.

19 minutes ago

Amazon and eBay should watch their backs. As Chinese e-commerce powerhouse Alibaba readies what could be the biggest initial public offering ever on the New York Stock Exchange, it is quietly hinting at plans ...

Stem cells use 'first aid kits' to repair damage

19 minutes ago

Stem cells hold great promise as a means of repairing cells in conditions such as multiple sclerosis, stroke or injuries of the spinal cord because they have the ability to develop into almost any cell type. ...

Last month was hottest August since 1880

24 minutes ago

Last month was the hottest August on record for global average temperatures over land and ocean surfaces, the US National Oceanic and Atmospheric Administration said on Thursday.

First eyewitness accounts of mystery volcanic eruption

33 minutes ago

New light has been shed on one of the biggest volcanic eruptions in the last 500 years—the so-called 'Unknown eruption'—thanks to an unusual collaboration between a historian and a team of earth scientists at the University ...

Recommended for you

Dwindling wind may tip predator-prey balance

13 hours ago

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

Environmental pollutants make worms susceptible to cold

17 hours ago

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Research helps steer mites from bees

19 hours ago

A Simon Fraser University chemistry professor has found a way to sway mites from their damaging effects on bees that care and feed the all-important queen bee.

User comments : 0