From one laying to another the female collembolan adapts its eggs to environmental constraints

Sep 22, 2008

Reproductive plasticity – the ability of individuals to modify their reproduction and the characteristics of their progeny according to environmental or social conditions – is a crucial factor in the demographics of animal populations, including man. Two scientists in the Laboratoire Écologie & Évolution (CNRS/Université Pierre et Marie Curie/École normale supérieure de Paris) have demonstrated the adaptive nature of the reproductive behavior of certain arthropods from one laying to another, in the same female.

Thomas Tully and Régis Ferrière, researchers in the Laboratoire Écologie & Évolution, studied populations of Collembola, one of the most ancient and abundant groups of arthropods on Earth. They showed that over the course of evolution, some Collembola populations have acquired an extraordinary ability to adjust their reproductive behavior when faced with abrupt environmental or social change.

From one laying to another, a female can adapt not only the number but the size of her eggs, so that the young will be more capable of surviving in their new environmental conditions. In a food-rich environment, females will tend to lay a larger number of smaller eggs. In a highly competitive environment, where individuals are numerous but food is less abundant, the eggs will be fewer in number but larger, thus allowing larger newborns to survive better under these difficult conditions.

Such flexibility constitutes a major adaptation, but the scientists also noted that the most plastic lines of Collembola were also those that experienced the earliest mortality. In this species, two strategies coexist in nature: plastic reproduction at the cost of reduced longevity, or a longer life without any great capacity for reproductive adjustment. Comparison of these two strategies, which diverged at an early stage in the evolutionary history of this species, suggests that accelerated aging could result not simply from more intense reproduction but also from a high level of plasticity and genetic potential for reproduction.

Citation: Reproductive Flexibility: Genetic Variation, Genetic Costs and Long-Term Evolution in a Collembola Thomas Tully & Régis Ferrière, PLoS One, 15 September 2008

Source: CNRS

Explore further: The appeal of being anti-GMO

Related Stories

'Map spam' puts Google in awkward place

11 hours ago

Google was re-evaluating its user-edited online map system Friday after the latest embarrassing incident—an image of an Android mascot urinating on an Apple logo.

Recommended for you

York's anti-malarial plant given Chinese approval

16 hours ago

A new hybrid plant used in anti-malarial drug production, developed by scientists at the University of York's Centre for Novel Agricultural Products (CNAP), is now registered as a new variety in China.

The appeal of being anti-GMO

21 hours ago

A team of Belgian philosophers and plant biotechnologists have turned to cognitive science to explain why opposition to genetically modified organisms (GMOs) has become so widespread, despite positive contributions ...

Micro fingers for arranging single cells

21 hours ago

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.