Lasers, software and the Devil's Slide

Jun 30, 2008
Lasers, Software and the Devil's Slide
Close-up image of the tunnel roof showing a gVT measurement location. The arrow is a vector perpendicular to a surface that marks a discontinuity between rock layers. The orientation of the arrow in space gives the azimuth and slope of the surface. Credit: Jeramy Decker, Kiewit Corp

Running for more than 1,000 kilometers along picturesque coastline, California's Highway 1 is easy prey for many of the natural hazards plaguing the region, including landslides.

The California Department of Transportation (Caltrans) is currently building a kilometer-long tunnel to bypass one of the most landslide-prone stretches of the highway, the Devil's Slide, to help ensure drivers' safe passage.

Using a new software package developed by researchers at Virginia Tech in Blacksburg, Va., project engineers are getting a detailed 3-D view of the rock exposed in the excavation, adding a new tool for improving both safety and construction progress.

Developed as part of a National Science Foundation Information Technology Research Initiative (ITR) project, the software, called "geotechnical Visualization Tool" (gVT), converts imagery of millions of rock-surface points--collected at a safe distance by a laser scanner--into an easily manipulated web of information. The data become a permanent digital record of the newly exposed material.

The scan data, at a resolution of 5 millimeters, provides information that the software program packages into enormous visualizations incorporating up to 10 meters of excavated tunnel. Engineers then use gVT to spot potential hazards to both the tunnel and the construction crews before weaknesses in the rock have a chance to trigger a collapse.

The information is so detailed that researchers can observe where rock layers are separating and how fractures are oriented. Researchers can even recreate sections of rock after they have fallen, providing a critical asset for determining where and how to safely drill. Because the data is portable, engineers can conduct all of the analyses from their home base at any time, far from the danger of the tunnel.

"Geologic maps have traditionally been made using manual measurements taken by geologists directly on the rock," said Joseph Dove, the lead developer of gVT at Virginia Tech and co-PI on the ITR project. "Laser scanning is revolutionary for underground mapping because it allows direct collection of digital data in three dimensions at high resolution."

After a careful analysis of the scanned data, the engineers can take manual follow-up measurements to confirm their results.

"These 3-D visualizations enhance geological documentation and an engineer's ability to make decisions," added Jeramy Decker, a Ph.D. graduate of Virginia Tech and co-developer of gVT, now at Kiewitt Pacific Company, the construction contractor excavating the tunnels.

In use as part of a suite of private industry engineering tools and software critical to the tunneling beneath Devil's Slide, gVT is the product of a two-year collaboration between civil engineers and computer scientists. The Devil's Slide application is the first use of gVT in a true construction environment.

Decker presented the new technique in a talk at the 42nd U.S.-Canada Rock Mechanics Symposium in San Francisco on June 29th.

Source: National Science Foundation

Explore further: Video: Corrosion research informing best practices in the oil and gas industry

add to favorites email to friend print save as pdf

Related Stories

Group backs off plan to put fracking ban on Colorado ballot

17 minutes ago

(AP)—An activist group on Thursday backed off its earlier announcement that it would to try to get a statewide ban on hydraulic fracturing on the Colorado ballot and said it would instead try to persuade Gov. John Hickenlooper ...

Judge orders suspension of WhatsApp in Brazil

22 minutes ago

(AP)—A judge says he has ordered the suspension of the globally popular instant messaging system WhatsApp across Brazil because it has allegedly failed to help in an investigation.

Recommended for you

Laser weapon system stops truck in field test

6 hours ago

Lockheed Martin's 30-kilowatt fiber laser weapon system successfully disabled the engine of a small truck during a recent field test, demonstrating the rapidly evolving precision capability to protect military ...

Applications of networked micro-drones

9 hours ago

Micro-drones are already being put to use in a large number of areas: These small aircraft face extensive requirements when performing aerial observation tasks or when deployed in the field of disaster management. A newly ...

Large-surface light-emitting plastic film

Mar 03, 2015

Based on OLED technology and implemented by means of a printing machine, this method developed by VTT Technical Research Centre of Finland Ltd provides an opportunity to create patterned and flexible light-emitting ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.