Avoiding wind tunnels, computer simulations pave way for hypersonic flight

Apr 10, 2008

A two-hour plane flight between Tokyo and New York sounds like science fiction, but methods developed by Princeton engineers to describe turbulence at extreme conditions may aid the design of aircraft with that kind of speed, 15 times faster than sound.

Bypassing the need for prohibitively difficult wind tunnel tests, Pino Martin, an assistant professor of mechanical and aerospace engineering, and her research group created powerful computer simulations that show how air behaves at speeds greater than 5,000 miles per hour and temperatures of nearly 14,000 degrees Fahrenheit. Understanding air flow under these conditions is critical for creating a new class of jet engines that are far more powerful than anything available today.

"Detailed wind tunnel experiments in these hostile regimes are extremely challenging, if not impossible," Martin said. Her highly refined computer simulations allow other engineers to test concepts and develop new theories of turbulence before building actual models.

Conventional jet engines rely on compressors to force air into the combustor, where the oxygen is used to burn fuel. The hot air generated is then forced out the back of the plane to generate forward thrust. The success of hypersonic flight hinges on the development of safe and efficient engines known as scramjets. Rather than using a compressor to push oxygen stored on board into the combustor, scramjets rely on the jet's extremely fast forward motion to force the surrounding air into the engine, burn fuel and generate thrust.

While NASA and the U.S. Air Force have used experimental scramjets to reach speeds up to 9.6 times the speed of sound -- nearly 7,000 miles per hour -- the large-scale and commercial deployment of the vehicles will require a far greater understanding of the turbulence and shock waves that aircraft encounter as they hurdle through the atmosphere. This is of crucial importance to scramjets because a loss of smooth air flow could cause them to suddenly lose thrust.

A major success of the methods developed by Martin and her research group is their ability to recognize shock waves -- extremely small, powerful and abrupt disturbances in the flow of a fluid -- and distinguish them from normal turbulence. Existing simulations are often unable to make that distinction, which greatly diminishes their predictive capabilities. Martin's methods allow researchers to examine the details of hypersonic air flow at small and large scales, revealing features ranging in length from micrometers to meters and occurring at frequencies from 1,000 to 1,000,000 times per second. With this ability, the simulations recognize the slightest distinction between normal fluctuations and shock waves, making them extremely powerful tools for explaining a broad range of turbulent flow conditions.

"Pino Martin is conducting excellent research in direct numerical simulation of fundamental turbulent flows that accurately resolves the smallest physical scales," said Kevin Bowcutt, the chief scientist of hypersonics for Boeing. "The ultimate realization of manned, scramjet-powered hypersonic flight, and therefore routine and affordable rapid global transport and access to space, depends critically upon the successful development of predictive computational fluid dynamics. In turn, the realization of predictive computational fluid dynamics depends critically upon Professor Martin's turbulent flow simulation work."

Martin credits her team's success to their collaboration with Alexander Smits, chair and professor of Princeton's mechanical and aerospace engineering department. Smits, a leading experimentalist in the field of fluid dynamics, provides real-world turbulence data in a range of conditions to help guide the development of accurate simulation methods.

"These simulations will lead to a better understanding of the physics involved, which will allow us to develop better laws and models," Martin said. "This new understanding may lead to novel design concepts that enable hypersonic travel as well as safe and affordable access to space."

The ability to efficiently recognize and track patterns and events, such as shock waves, in scientific data may have broader applications in a variety of scientific fields. For example, similar methods might be used to track weather fronts, the dispersion of biological organisms or mutations in genetic information.

Source: Princeton University

Explore further: Biology meets geometry: Describing geometry of common cellular structure

add to favorites email to friend print save as pdf

Related Stories

Clean smell doesn't always mean clean air

Oct 29, 2014

Some of the same chemical reactions that occur in the atmosphere as a result of smog and ozone are actually taking place in your house while you are cleaning. A researcher in Drexel's College of Engineering ...

Sweeping air devices for greener planes

Oct 21, 2014

The large amount of jet fuel required to fly an airplane from point A to point B can have negative impacts on the environment and—as higher fuel costs contribute to rising ticket prices—a traveler's wallet. ...

HP supercomputer at NREL garners top honor

Oct 21, 2014

A supercomputer created by Hewlett-Packard (HP) and the Energy Department's National Renewable Energy Laboratory (NREL) that uses warm water to cool its servers, and then re-uses that water to heat its building, has been ...

Under Rainier's crater, a natural laboratory like no other

Oct 03, 2014

Counting all the ups and downs, he had climbed more than 15,000 feet to get here - past yawning crevasses and over cliffs where a single misstep could send a rope team tumbling. His party was pummeled by a lightning storm ...

Recommended for you

High-intensity sound waves may aid regenerative medicine

15 hours ago

Researchers at the University of Washington have developed a way to use sound to create cellular scaffolding for tissue engineering, a unique approach that could help overcome one of regenerative medicine's ...

Formula could shed light on global climate change

19 hours ago

Wright State University researchers have discovered a formula that accurately predicts the rate at which soil develops from the surface to the underlying rock, a breakthrough that could answer questions about ...

New world record for a neutron scattering magnet

20 hours ago

A unique magnet developed by the Florida State University-headquartered National High Magnetic Field Laboratory (MagLab) and Germany's Helmholtz Centre Berlin (HZB) has reached a new world record for a neutron ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

wolfkeeper
2.5 / 5 (2) Apr 10, 2008
The problem with this stuff is that if Concorde could only *just* make it across the atlantic, what chance is there of something going at hypersonic speeds making any long distances?

Ignoring the engine efficiency (which per mile is probably going to be lower), the L/D ratio at hypersonic speeds is inevitably reduced over that that Concorde could achieve, and hence range suffers. So it's unlikely that these aircraft can make such long distances.
Modernmystic
3 / 5 (3) Apr 11, 2008
I believe their thinking is that some of these planes will be flying very high, perhaps even suborbital. That could make a big difference on range and efficiency issues.
COCO
4 / 5 (1) Apr 11, 2008
the Auroa does this now
gopher65
3 / 5 (2) Apr 12, 2008
These are also scramjets. Normal supersonic aircraft have to carry large amounts of oxygen (either in separate tanks or fuel with a high oxygen content). At those speeds they simply can't get enough oxygen out of the air to burn normal fuel. Scramjets by-pass that problem by funnelling large amounts of air through their combustion chamber, allowing the aircraft to carry far less fuel than it otherwise would need to. But this only works at... something like mach 4 (or is it 7 ?).

Since they carry less fuel (and less fuel to carry that fuel, and less fuel to carry the fuel to carry that fuel, and less... ok, you get the point:P. This is why we rarely build huge rockets. You need more fuel just to carry your fuel. It quickly becomes highly inefficient), they have greatly increased ranges over traditional supersonic aircraft.
nilbud
1 / 5 (3) Apr 14, 2008
Supersonic aircraft do not have to carry tanks of oxygen except for crew purposes. It's amazing that you confuse rocketry with all supersonic flight.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.