Engineering students: Airbrush not just for artists

Feb 14, 2008
Engineering students: Airbrush not just for artists
A microelectrode made in part with an airbrush is seen in this photo shot at a University of Florida laboratory. On a suggestion from a student who had a hobby making paper airplanes, UF engineering students came up with a way to use airbrushes to make the microelectrodes, which are used in glucose monitors for diabetics and other sensors. The airbrush technique is far cheaper and simpler than the standard one, though it works best for small, customized jobs rather than in mass production. Credit: University of Florida

The airbrush, that tool behind tattoos and T-shirts, may have an unexpected future … in technology.

A group of engineering students at the University of Florida has come up with a method for using an airbrush to make microelectrodes — tiny conductors used in an increasing range of consumer, research and medical products. The technique is simpler than the standard one, at least for small projects that require production of only a few electrodes.

“The idea was to try to find something cheap and quick, that we could do in our own lab without much expense,” said student Corey Walker.

Walker was one of four UF engineering students who worked on the project. Now a doctoral student in biomedical engineering at the University of California, Irvine, he is the lead author of a paper appearing this month in the online edition of the journal Electroanalysis.

Microelectrodes are highly sensitive, fingernail-sized devices used, for example, in off-the-shelf glucose monitors for diabetics. They are also vital to “lab on a chip” devices under development to identify substances in air, blood or other samples.

The industry standard for manufacturing microelectrodes is screen printing, a technique that, oddly, is also borrowed from the visual arts. But it requires a screen printer, and the students, who were trying to craft a hydrogen sensor, didn’t have one.

So a student who used airbrushes to build model airplanes suggested they try that tool. Trials and tests perfected the approach, with the students eventually using fully airbrushed electrodes to craft a working sensor. The technique works best for small projects because it requires each electrode to be made individually or in small batches.

“A screen-printing machine useful for fabricating microelectrodes might cost $10,000, whereas you can buy an airbrush for less than $200,” said Hugh Fan, an associate professor of mechanical and aerospace engineering who oversaw the project. “So this is a useful technique for small, custom projects.”

Source: University of Florida

Explore further: Laser weapon system stops truck in field test

add to favorites email to friend print save as pdf

Related Stories

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Creating the energy Internet

Feb 26, 2015

It only takes a power outage of a few minutes in the middle of a busy workday to drive home the hazards of relying on an energy infrastructure rooted in the Industrial Age. Without the electricity delivered ...

Florentine basilica gets high-tech physical

Feb 26, 2015

Late last year, two University of California, San Diego students set out for Florence, Italy, to diagnose a patient that had no prior medical record, couldn't be poked or prodded in any way, and hadn't been ...

Recommended for you

Laser weapon system stops truck in field test

Mar 04, 2015

Lockheed Martin's 30-kilowatt fiber laser weapon system successfully disabled the engine of a small truck during a recent field test, demonstrating the rapidly evolving precision capability to protect military ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.