EPIC: Building the Perfect Chip

Feb 07, 2008

Three years ago a team from Bell Labs took on a very daunting challenge – put an optical networking system on a commercially manufactured silicon chip, load it with a smorgasbord of sophisticated opto-electronic devices in a combination that’s never been done before, and make it easy to mass produce.

The project is part of a U.S. DARPA-funded program (Defense Advanced Research Project Agency) to develop technologies and design tools necessary to fabricate an application specific, electronic-photonic integrated circuit (EPIC). This program is led by BAE Systems in partnership with MIT, Applied Wave Research, and Bell Labs, through Alcatel-Lucent’s LGS subsidiary.

“Modern communication systems are built using both photonic and electronic components, each with their own technology platforms based on different materials. The vision is to put photonics and electronics on a tiny silicon chip where the strengths of both technologies can be realized on a high volume, low cost manufacturing platform,” explained Sanjay Patel, Bell Labs Integrated Photonics.

CMOS (complementary metal oxide semiconductor), fabrication is the platform on which today’s electronics industry is based. Recently, CMOS fabrication passed a feature-size milestone where the level of control in integrated circuit manufacturing is precise enough to support the demanding requirements of photonics. The timing is right to take advantage of the commercial mass production infrastructure and put optical networking onto silicon.

“The EPIC project achieved the critical first step in building the foundation for this new breed of devices,” said Alice White, vice president, Enabling Physical Technologies Research at Alcatel-Lucent’s Bell Labs. “We’ve applied our core competency in optics and expertise in chip design and telecommunications technology towards realizing the full potential of silicon-based optical networking by not only creating circuits that can carry optical signals, but providing the control to modify those signals, which is a much more sophisticated process.”

This research will enable telecom providers to move from using specialized and large optical networking devices to a new generation of low cost, mass produced silicon chips that combine electronics and photonics in a single chip - opening the door to new optical networking architectures that could usher in new sorts of broadband deployments and applications. Possible new applications include low-cost, mass deployment of fiber to the home; truly meshed optical networks that cleanly switch optical signals between different transmission formats; and the deployment of optical networking into places unapproachable by today’s optical networking devices such as over short-runs or in confined spaces.

A wide variety of photonic components are being developed on the silicon platform under the EPIC program to complement the existing suite of electronic components already available in the marketplace. These include all the basic building blocks of any modern optical communication system: optical filters to provide signal processing in the optical domain; electro-optic modulators to convert electrical signals to the optical domain; optical filters to provide signal processing in the optical domain; and detectors to convert optical signals back to the electrical domain.

One of the first achievements of the EPIC project is a highly versatile guided-wave (tunable) optical filter made entirely in a standard CMOS manufacturing line, upon which was demonstrated a novel optical equalizer. This achievement, announced at the 2007 OFC/NFOEC conference, is a critical first step toward the ultimate goal of seamless integration of photonics and electronics on the CMOS platform.

The tunable optical equalizer uses a novel architecture to correct distortion from bandwidth limitations in the signal, allowing for superior performance with minimal control requirements. It also counteracts another form of distortion in a signal, called dispersion. “Self-correction” of distortion could significantly improve the speed, cost and performance of next-generation optical and high-speed data networks.

“The success we have achieved thus far bodes well for the full EPIC capability envisioned by DARPA as well as for novel and potentially lower cost components for commercial optical systems,” said Patel.

Source: Bell Labs

Explore further: A bump circuit with flexible tuning ability that uses 500 times less power

add to favorites email to friend print save as pdf

Related Stories

Facebook awards 'Internet Defense Prize'

56 minutes ago

Facebook awarded a $50,000 Internet Defense Prize to a pair of German researchers with a seemingly viable approach to detecting vulnerabilities in Web applications.

HP revenue inches up after years of decline

10 hours ago

Hewlett-Packard on Wednesday reported that its quarterly revenue rose for the first time in three years, nudged by improved computer sales everywhere except Russia and China.

Recommended for you

Ahead of Emmys, Netflix already winning online

1 minute ago

Even if it doesn't take home any of the major trophies at Monday's Emmy Awards, Netflix will have already proven itself the top winner in one regard: Internet programming.

US warns shops to watch for customer data hacking

1 minute ago

The US Department of Homeland Security on Friday warned businesses to watch for hackers targeting customer data with malicious computer code like that used against retail giant Target.

Official says hackers hit up to 25,000 US workers

16 minutes ago

The internal records of as many as 25,000 Homeland Security Department employees were exposed during a recent computer break-in at a federal contractor that handles security clearances, an agency official said Friday.

Oregon sues Oracle over failed health care website

10 hours ago

Oregon Attorney General Ellen Rosenblum says she's filed a lawsuit against Oracle Corp. and several of its executives over the technology company's role in the state's troubled health insurance exchange.

Google buys product design firm Gecko

10 hours ago

Google on Friday confirmed that it bought Gecko Design to bolster its lab devoted to technology-advancing projects such as self-driving cars and Internet-linked Glass eyewear.

User comments : 0