Tropical soils impede landmine detection

Feb 06, 2008

Use of a metal detector is the most common technique when searching for landmines, which litter the soil in approximately 90 countries around the world. Many of these countries are located in the tropics where intensively weathered soils are prevalent. These tropical soils have certain properties that can limit the performance of metal detectors due to soil magnetic susceptibility. This problem is enhanced by the spread of minimum-metal mines.

Magnetic properties of soils are caused by ferrimagnetic minerals, such as magnetite and maghemite. The negative effects can result in a reduction of detector sensitivity or cause false alarms. To overcome these problems, the metal detectors have been continuously re-hauled over the years but only now has the geoscientific research of the soil been taken into account. The knowledge of soil magnetic properties may allow detectors to be adapted to meet the local conditions.

Geoscientists at the Leibniz Institute for Applied Geosciences and the Federal Institute for Geosciences and Natural Resources in Hannover, Germany conducted a study on the magnetic susceptibility of tropical soils using the soil archive of the Federal Agency. The magnetic susceptibility of more than 500 soil samples from the entire tropical belt was analyzed with the goal of classifying their impact on landmine detection. The research was funded by the German Federal Ministry of Education and Research and was published in the January-February 2008 issue of the Soil Science Society of America Journal.

The study revealed that the problem of soil influence can occur quite frequently. More than one-third of the measured soil samples may generate severe or very severe limitations when using metal detectors. Soils were grouped according to their parent rocks. On average susceptibility of soils with basaltic origin were higher than those of other origin. However, the variability within the different groups is high. This provides evidence that besides origin additional influences on soil susceptibility such as soil development are likely to exist.

The significance of the study is highlighted by a statement of Holger Preetz who conducted the study: “We are very lucky that such a large number of soil samples were available from the soil archive. This allowed us to investigate the impact of weathering and rock type on soil susceptibility simultaneously. We found a clear indication for a strong influence of soil development on the occurrence of high susceptibilities. Based on these results we are able to provide a classification scheme for the prediction of detector performance. This is of great interest for the de-mining community. During the planning phase of a de-mining mission the classification of magnetic soil properties can be done by using easily available geoscientific information.”

The study provides a solid base for further research. In an upcoming investigation we plan to clarify the question whether residual enrichment or neoformation of magnetic minerals is the dominant processes for increasing soil susceptibility during soil development. These results will provide insights whether it is more reasonable to use a soil map or a geological map or both for predicting susceptibility. In addition, the research looks into the characteristics of the frequency of the soil magnetic susceptibility which also affects detector performance and is therefore of great interest to the de-mining community.

Source: Soil Science Society of America

Explore further: New detector sniffs out origins of methane

add to favorites email to friend print save as pdf

Related Stories

Cattle damage to riverbanks can be undone

Feb 19, 2015

Simply removing cattle may be all that is required to restore many degraded riverside areas in the American West, although this can vary and is dependent on local conditions. These are the findings of Jonathan ...

Stirling Range flora nears extinction

Jan 29, 2015

The soil-borne water mould Phytophthora cinnamomi (dieback) has rendered unique vegetation on the peaks of the Stirling Ranges in the Great Southern to the point of being critically endangered.

Simple soil mixture reverses toxic stormwater effects

Jan 20, 2015

A simple column of common soil can reverse the toxic effects of urban runoff that otherwise quickly kills young coho salmon and their insect prey, according to new research by Washington State University, NOAA Fisheries and ...

Recommended for you

New detector sniffs out origins of methane

14 hours ago

Methane is a potent greenhouse gas, second only to carbon dioxide in its capacity to trap heat in Earth's atmosphere for a long time. The gas can originate from lakes and swamps, natural-gas pipelines, deep-sea ...

The tides they are a changin'

19 hours ago

Scientists from the University of Southampton have found that ocean tides have changed significantly over the last century at many coastal locations around the world.

Lightning plus volcanic ash make glass

Mar 03, 2015

In their open-access paper for Geology, Kimberly Genareau and colleagues propose, for the first time, a mechanism for the generation of glass spherules in geologic deposits through the occurrence of volcan ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

vivcollins
not rated yet Feb 06, 2008
The implications for ground penetrating radar in soils containing ferrimagnetic particles should also be considered

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.