Gamma Ray Delay May Be Sign of 'New Physics'

Oct 01, 2007

Delayed gamma rays from deep space may provide the first evidence for physics beyond current theories.

The MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescope found that high-energy photons of gamma radiation from a distant galaxy arrived at Earth four minutes after lower-energy photons, although they were apparently emitted at the same time. If correct, that would contradict Einstein's theory of relativity, which says that all photons (particles of light) must move at the speed of light.

"Everybody's very excited," about this result, said Daniel Ferenc, a physics professor at UC Davis and a member of the MAGIC collaboration. Ferenc cautioned that the results need to be repeated with other gamma-ray sources and that a simpler explanation had not been ruled out. But, "it shows that such measurements are possible," he said.

The researchers propose that the delay could be caused by photons interacting with "quantum foam," a type of structure of space itself. Quantum foam is predicted by quantum gravity theory, an attempt to unite quantum physics and relativity at cosmic scales.

The astronomers pointed the telescope at Markarian 501, a galaxy half a billion light-years away that contains a "blazar" -- a massive black hole that gives off bursts of gamma rays. Some of the material falling toward the black hole gets squeezed into jets that burst from the poles of the object at close to the speed of light. These jets fire off flares of gamma rays a few minutes long.

The researchers sorted high- and low-energy gamma-ray photons coming from the object with each flare. Joined by a group of theoretical physicists led by John Ellis from CERN, the MAGIC team showed that the high- and low-energy photons appeared to have been emitted at the same time. But the high-energy photons arrived four minutes late after traveling through space for about 500 million years.

The work has been submitted for publication in Physics Review Letters.

Source: UC Davis

Explore further: Top-precision optical atomic clock starts ticking

add to favorites email to friend print save as pdf

Related Stories

Fresh nuclear leak detected at Fukushima plant

1 hour ago

Sensors at the Fukushima nuclear plant have detected a fresh leak of highly radioactive water to the sea, the plant's operator announced Sunday, highlighting difficulties in decommissioning the crippled plant.

Spacewalking astronauts route cable in 1st of 3 jobs

2 hours ago

(AP)—Spacewalking astronauts routed more than 300 feet (90 meters) of cable outside the International Space Station on Saturday, tricky and tiring advance work for the arrival of new American-made crew ...

Driverless shuttle will be on the move in UK

3 hours ago

(Phys.org) —"Autonomous public transport" is on the minds of planners who envision self-driving vehicles that would cross over short distances, suited for airport transport, industrial sites, theme parks ...

Superfish points fingers over ad software security flaws

6 hours ago

A little-known Silicon Valley startup was caught in a firestorm of criticism this week for making software that exposed Lenovo laptop users to hackers bent on stealing personal information. But Superfish Inc. ...

Recommended for you

New filter could advance terahertz data transmission

7 hours ago

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

7 hours ago

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

A new X-ray microscope for nanoscale imaging

10 hours ago

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

Top-precision optical atomic clock starts ticking

Feb 26, 2015

A state-of-the-art optical atomic clock, collaboratively developed by scientists from the University of Warsaw, Jagiellonian University, and Nicolaus Copernicus University, is now "ticking away" at the National ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

BaRbArIaN
not rated yet Oct 03, 2007
I've always wondered if higher energy photons were affected by gravity more than lower energy ones. After all the equivalent masses of their energies differ (via E=mc**2) by the same amount as their energies. While the effect of gravitation may not be much on such small equivalent masses, its conceivable that the difference of 4 minutes out of 500 million years is reasonable.
Sonhouse
not rated yet Mar 18, 2009
If there was some interaction with gravity, it would produce doppler effects also. Don't know if any such effect was noticed, maybe too small to be measured.
Sonhouse
not rated yet Mar 18, 2009
Maybe a development of new detectors like this will help in that search:
http://www.physor...753.html
smiffy
not rated yet Mar 19, 2009
Is this effect not to be expected from standard theory? I mean that photons of a higher frequency should travel more slowly in any given medium. Interstellar space is not a vacuum. It is a medium, albeit a very thin one.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.