Collapsing structures to be tested in revamped UW engineering lab

Sep 20, 2007
Collapsing structures to be tested in revamped UW engineering lab
Meet the Baldwin: This 40-foot-tall compression machine is central to the University of Washington's Structural Research Laboratory. The equipment performs full-scale tests for earthquake stresses and extreme loads on ports, buildings and bridges. Soon it will also simulate collapse. Credit: UW

Just as Minneapolis now finds itself in the middle of a national debate on bridge safety, so the Puget Sound area was some 70 years ago. The infamous collapse of the Tacoma Narrows Bridge in 1940 prompted a national discussion on bridge engineering. It also provided the impetus for founding University of Washington's Structural Research Laboratory, which opened its doors in 1948 in the school's department of civil and environmental engineering.

Through the decades, engineers at the UW built a national reputation for researching the safety of large-scale infrastructure such as piers, bridges and buildings. This August, the lab received a $557,870 grant from the National Science Foundation to augment its central equipment and prepare for modern challenges.

The money will be used to add features to the lab's central piece of equipment, dubbed "the Baldwin," and related machinery. The Baldwin pushes down with as much as 2.4 million pounds of pressure on piers, support beams, trestles or other critical components of engineering infrastructure. Related equipment simulates other dynamic loads on a structure, such as earthquake, wind and blast, at the same time. In this laboratory, breaking things to better understand them is the goal. The UW's lab is one of the few in the country that has the capacity to take components all the way to failure. The new grant will allow the Baldwin to simulate real-time collapse.

"Most labs can't take a structure completely to collapse because you have to be able to handle a large load and be able to control that load very precisely," said lab director Dawn Lehman, a UW assistant professor of civil and environmental engineering. One of the changes will allow experiments to change the load electronically, rather than manually, in order to vary the load as fast as 10 times per second. Other enhancements will use laser sensors to monitor the component's behavior without having to use a device that actually touches the system.

As a structure begins to fail it shifts the load to different parts of the structure, and sudden caving in poses risks to human life. Researchers will record the performance of infrastructure and then use the measurements in computer simulations. The device can test components as large as 25 feet tall.

"We've found in recent earthquakes that people made misleading decisions based on small-scale tests," said Charles Roeder, a UW professor of civil and environmental engineering and expert on bridge construction. "We're doing bigger and bigger tests. It's more expensive, but it gives you better data."

The upgrade will be complete by 2009. Meanwhile other tests will continue.

Historical photographs from the early 1950s show engineers working in the lab sporting Homburg hats and smoking pipes. The 40-foot-tall Baldwin originally traveled to campus on a railway car. Once it was in place, the lab was built around it.

Although fashions have changed, the need to test crucial infrastructure has not gone away. A number of high-profile events in recent years -- including the World Trade Center's collapse in 2001, the destruction of the federal building in Oklahoma City, and ongoing concerns about terrorist attacks -- prompted the request to add modern features to the lab's biggest piece of equipment. The recent failure of the Interstate 35W bridge in Minneapolis raised new questions about the safety of aging bridges across the nation.

The structures laboratory is currently researching a wide range of issues, including gusset plate connections for braced frames, rapid construction methods for bridges, concrete-filled bridge piers, and lightweight bridge-deck replacements.

By observing the collapse and comparing different materials' performance, the engineers hope that even in a worst-case scenario the structure would be less likely to break. An older reinforced concrete building is 10 times more likely to fail than a new one, Lehman noted. This suggests that construction methods have a profound impact on safety.

The researchers hope to discover further improvements. Most of the tests are not on specific roads or on bridges. Instead, they compare designs that would have broad application to the construction and engineering communities.

"Eventually, we're going to break something," Roeder said of the tests, which start by gradually stressing the system and then crank up the pressure until something gives. "The question is what breaks, and how quickly."

Source: University of Washington

Explore further: Researchers propose network-based evaluation tool to assess relief operations feasibility

add to favorites email to friend print save as pdf

Related Stories

Drones used to assess damage after disasters

Apr 11, 2014

Researchers of the University of Twente use a new method to map structural damage after disasters. A remote-controlled drone with a regular high-quality camera takes a large amount of pictures of a building. ...

Freighter without crew

Apr 02, 2014

Ships of the future will soon be steered across the Seven Seas – unmanned. A new simulator is helping propel these plans forward. Partners from five different countries engineered the design of the autonomous ...

NASA aces delicate operation with aircraft tail

Mar 28, 2014

Descending inch by inch, the crane operator cautiously lowered the fragile cargo toward the hard floor below. Dozens of eyes, human and electronic, watched along to ensure a clear path. One slip, one inadvertent ...

Model now capable of street-level storm-tide predictions

Mar 25, 2014

The water that surged into the intersection of New York City's Canal and Hudson streets during Hurricane Sandy—to choose just one flood-ravaged locale—was ultimately driven ashore by forces swirling hundreds ...

Recommended for you

Large streams of data warn cars, banks and oil drillers

6 hours ago

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 0

More news stories

Quantenna promises 10-gigabit Wi-Fi by next year

(Phys.org) —Quantenna Communications has announced that it has plans for releasing a chipset that will be capable of delivering 10Gbps WiFi to/from routers, bridges and computers by sometime next year. ...

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Unlocking secrets of new solar material

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

How kids' brain structures grow as memory develops

Our ability to store memories improves during childhood, associated with structural changes in the hippocampus and its connections with prefrontal and parietal cortices. New research from UC Davis is exploring ...

Gate for bacterial toxins found

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...