Higher efficiency organic solar cell created

Jul 12, 2007

Using plastics to harvest the energy of the sun just got a significant boost in efficiency thanks to a discovery made at the Center for Polymers and Organic Solids at the University of California, Santa Barbara.

Nobel laureate Alan Heeger, professor of physics at UC Santa Barbara, worked with Kwanghee Lee of Korea and a team of other scientists to create a new “tandem” organic solar cell with increased efficiency. The discovery, explained in the July 13 issue of the journal Science, marks a step forward in materials science.

Tandem cells are comprised of two multilayered parts that work together to gather a wider range of the spectrum of solar radiation –– at both shorter and longer wavelengths. “The result is six and a half percent efficiency,” said Heeger. “This is the highest level achieved for solar cells made from organic materials. I am confident that we can make additional improvements that will yield efficiencies sufficiently high for commercial products.” He expects this technology to be on the market in about three years.

Heeger and Lee have collaborated for many years on developing solar cells. The new tandem architecture that they discovered both improves light harvesting and promises to be less expensive to produce. In their paper, the authors explain that the cells “… can be fabricated to extend over large areas by means of low-cost printing and coating technologies that can simultaneously pattern the active materials on lightweight flexible substrates.”

The multilayered device is the equivalent of two cells in series, said Heeger. The deposition of each layer of the multilayer structure by processing the materials from solution is what promises to make the solar cells less expensive to produce.

“Tandem solar cells, in which two solar cells with different absorption characteristics are linked to use a wider range of the solar spectrum, were fabricated with each layer processed from solution with the use of bulk heterojunction materials comprising semiconducting polymers and fullerene derivatives,” wrote the authors.

The cells are separated and connected by the material TiOx, a transparent titanium oxide. This is the key to the multilayer system that allows for the higher-level efficiencies. TiOx transports electrons and is a collecting layer for the first cell. In addition, it acts as a stable foundation that allows the fabrication of the second cell, thus completing the tandem cell architecture.

Heeger shared the Nobel Prize in Chemistry in the year 2000, with Alan MacDiarmid and Hideki Shirakawa, for the “discovery and development of conducting polymers.” The tandem solar cells reported in the Science article utilize semiconducting polymers from the class of materials that were recognized by the award of the Nobel Prize.

With Howard Berke, Heeger in 2000 co-founded Konarka Technologies, based in Lowell, Mass., to develop and market solar cells based on this technology.

Heeger recently was presented with the Italian Prize for Energy and the Environment (Eni Italgas Prize) for his discoveries and research accomplishments in the field of “plastic” solar cells. The Italian agency cited Heeger “for research that will begin to contribute to the energy needs of our planet in the near future.”

An exciting aspect of the latest discovery is that it is expected to contribute to third world usage of technologies such as laptop computers in areas that are “off the electricity grid.”

Source: University of California - Santa Barbara

Explore further: Pseudoparticles travel through photoactive material

Related Stories

Quantum dot TVs are unveiled at China tech expo

Apr 18, 2015

At this month's China Information Technology Expo (CITE) event, a headline-maker was the launch of quantum dot televisions, by QD Vision and Konka, the consumer electronics company. QD Vision's calling card ...

Electron trapping harnessed to make light sensors

Apr 21, 2015

Traps. Whether you're squaring off against the Empire or trying to wring electricity out of sunlight, they're almost never a good thing. But sometimes you can turn that trap to your advantage. A team from ...

Printing silicon on paper, with lasers

Apr 21, 2015

In seeking to develop the next generation of micro-electronic transistors, researchers have long sought to find the next best thing to replace silicon. To this end, a wealth of recent research into fully ...

Cobalt film a clean-fuel find

Apr 15, 2015

A cobalt-based thin film serves double duty as a new catalyst that produces both hydrogen and oxygen from water to feed fuel cells, according to scientists at Rice University.

Recommended for you

Pseudoparticles travel through photoactive material

Apr 23, 2015

Researchers of Karlsruhe Institute of Technology (KIT) have unveiled an important step in the conversion of light into storable energy: Together with scientists of the Fritz Haber Institute in Berlin and ...

From metal to insulator and back again

Apr 22, 2015

New work from Carnegie's Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Their work is published in Physical Re ...

Electron spin brings order to high entropy alloys

Apr 22, 2015

Researchers from North Carolina State University have discovered that electron spin brings a previously unknown degree of order to the high entropy alloy nickel iron chromium cobalt (NiFeCrCo) - and may play ...

Expanding the reach of metallic glass

Apr 22, 2015

Metallic glass, a class of materials that offers both pliability and strength, is poised for a friendly takeover of the chemical landscape.

Electrons move like light in three-dimensional solid

Apr 22, 2015

Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional ...

Quantum model helps solve mysteries of water

Apr 20, 2015

Water is one of the most common and extensively studied substances on earth. It is vital for all known forms of life but its unique behaviour has yet to be explained in terms of the properties of individual ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.