Solar storms trigger Jupiter's 'Northern Lights'

March 22, 2016
This is Jupiter's Great Red Spot in 2000 as seen by NASA's Cassini orbiter. Credit: NASA/JPL/Space Science Institute

Solar storms trigger Jupiter's intense 'Northern Lights' by generating a new X-ray aurora that is eight times brighter than normal and hundreds of times more energetic than Earth's aurora borealis, finds new UCL-led research using NASA's Chandra X-Ray Observatory.

It is the first time that Jupiter's X-ray aurora has been studied when a giant storm from the Sun has arrived at the planet. The dramatic findings complement NASA's Juno mission this summer which aims to understand the relationship between the two biggest structures in the solar system—the region of controlled by Jupiter's (i.e. its magnetosphere) and that controlled by the .

"There's a constant power struggle between the solar wind and Jupiter's magnetosphere. We want to understand this interaction and what effect it has on the planet. By studying how the aurora changes, we can discover more about the region of space controlled by Jupiter's magnetic field, and if or how this is influenced by the Sun. Understanding this relationship is important for the countless magnetic objects across the galaxy, including exoplanets, brown dwarfs and neutron stars," explained lead author and PhD student at UCL Mullard Space Science Laboratory, William Dunn.

The Sun constantly ejects streams of particles into space in the solar wind. When giant storms erupt, the winds become much stronger and compress Jupiter's magnetosphere, shifting its boundary with the solar wind two million kilometres through space. The study found that this interaction at the boundary triggers the high energy X-rays in Jupiter's Northern Lights, which cover an area bigger than the surface of the Earth.

Published today in the Journal of Geophysical Research - Space Physics a publication of the American Geophysical Union, the discovery comes as NASA's Juno spacecraft nears Jupiter for the start of its mission this summer. Launched in 2011, Juno aims to unlock the secrets of Jupiter's origin, helping us to understand how the solar system, including Earth, formed.

As part of the mission, Juno will investigate Jupiter's relationship with the Sun and the solar wind by studying its magnetic field, magnetosphere and aurora. The UCL team hope to find out how the X-rays form by collecting complementary data using the European Space Agency's X-ray space observatory, XMM-Newton, and NASA's Chandra X-ray observatory.

"Comparing new findings from Jupiter with what is already known for Earth will help explain how space weather is driven by the solar wind interacting with Earth's magnetosphere. New insights into how Jupiter's atmosphere is influenced by the Sun will help us characterise the atmospheres of exoplanets, giving us clues about whether a planet is likely to support life as we know it," said study supervisor, Professor Graziella Branduardi-Raymont, UCL Mullard Space Science Laboratory.

The impact of solar storms on Jupiter's aurora was tracked by monitoring the X-rays emitted during two 11 hour observations in October 2011 when an interplanetary coronal mass ejection was predicted to reach the planet from the Sun. The scientists used the data collected to build a spherical image to pinpoint the source of the X-ray activity and identify areas to investigate further at different time points.

William Dunn added, "In 2000, one of the most surprising findings was a bright 'hot spot' of X-rays in the aurora which rotated with the planet. It pulsed with bursts of X-rays every 45 minutes, like a planetary lighthouse. When the solar storm arrived in 2011, we saw that the hot spot pulsed more rapidly, brightening every 26 minutes. We're not sure what causes this increase in speed but, because it quickens during the storm, we think the pulsations are also connected to the solar wind, as well as the bright new aurora."

Another study out today, led by Tomoki Kimura from the Japan Aerospace Exploration Agency (JAXA) and co-authored by the UCL researchers, reports that the X-ray aurora responds to quieter 'gusts' of solar wind, deepening this connection between Jupiter and the solar wind.

The UCL-led study also involved researchers from NASA Marshall Space Flight Center, Boston University, Observatoire de Paris, MIT, Southwest Research Institute (SwRI), University of Southampton, University of Leicester, Japan Aerospace Exploration Agency (JAXA) and University of Michigan. It was kindly funded by the Science and Technology Facilities Council (STFC), NASA, the Natural and Environmental Research Council (NERC) and the Japan Society for the Promotion of Science (JSPS).

Explore further: Explosions of Jupiter's aurora linked to extraordinary planet-moon interaction

More information: William R. Dunn et al. The Impact of an ICME on the Jovian X-ray Aurora, Journal of Geophysical Research: Space Physics (2016). DOI: 10.1002/2015JA021888

Related Stories

Jupiter returns as king of the night sky

March 8, 2016

Since January, there have not been any planets to see in the evening sky. Instead, all five bright planets have been visible in the early hours before sunrise. But now Jupiter, the king of the planets, is making a return ...

Saturn and Enceladus produce the same amount of plasma

February 12, 2016

The first evidence that Saturn's upper atmosphere may, when buffeted by the solar wind, emit the same total amount of mass per second into its magnetosphere as its moon, Enceladus, has been found by UCL scientists working ...

Fast solar wind causes aurora light shows

October 12, 2015

On the night of Oct. 8, 2015, a photographer in Harstad, Norway captured this image of the dancing northern lights. Auroras are created when fast-moving, magnetic solar material strikes Earth's magnetic bubble, the magnetosphere. ...

Juno spacecraft breaks solar power distance record

January 14, 2016

NASA's Juno mission to Jupiter has broken the record to become humanity's most distant solar-powered emissary. The milestone occurred at 11 a.m. PST (2 p.m. EST, 19:00 UTC) on Wednesday, Jan. 13, when Juno was about 493 million ...

SMILE space mission passes first hurdle

June 4, 2015

A space mission called SMILE (Solar Wind Magnetosphere Ionosphere Link Explorer) which is jointly led by UCL and the Chinese National Space Science Center has received the go-ahead for an initial study phase this summer by ...

Recommended for you

Giant radio flare of Cygnus X-3 detected by astronomers

December 7, 2016

(Phys.org)—Russian astronomers have recently observed a giant radio flare from a strong X-ray binary source known as Cygnus X-3 (Cyg X-3 for short). The flare occurred after more than five years of quiescence of this source. ...

Dark matter may be smoother than expected

December 7, 2016

Analysis of a giant new galaxy survey, made with ESO's VLT Survey Telescope in Chile, suggests that dark matter may be less dense and more smoothly distributed throughout space than previously thought. An international team ...

Earth's days getting longer: study (Update)

December 7, 2016

Earth's days are getting longer but you're not likely to notice any time soon—it would take about 3.3 million years to gain just one minute, according to a study published on Wednesday.

New evidence for a warmer and wetter early Mars

December 7, 2016

A recent study from ESA's Mars Express and NASA's Mars Reconnaissance Orbiter (MRO) provides new evidence for a warm young Mars that hosted water across a geologically long timescale, rather than in short episodic bursts ...

ExoMars orbiter images Phobos

December 7, 2016

The ExoMars Trace Gas Orbiter has imaged the martian moon Phobos as part of a second set of test science measurements made since it arrived at the Red Planet on 19 October.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

cantdrive85
1.8 / 5 (5) Mar 23, 2016
Of course the pseudoscientists rely on "reconnection" to explain the x-ray hot spots, because pseudoscience is all they know. The polar hot spots are more likely due to plasma double layers and their associated electric fields.
Captain Stumpy
4 / 5 (4) Mar 23, 2016
The polar hot spots are more likely due to plasma double layers and their associated electric fields
@cdPSEUDOSCIENCE TROLL
and you can link a reputable journal and peer reviewed study supporting this, right?

(hyperbole intended)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.