Dominant ant species significantly influence ecosystems

February 1, 2016
Dominant ant species significantly influence ecosystems
An acrobat ant (Crematogaster modiglianii) transporting a plant seed (Malaysia, Borneo) Credit: photo/©: Florian Menzel

Ants and humans represent approximately the same amount of biomass on our planet. Together with other social insects, ants make up a third of the entire animal biomass in the tropics and hence have a major effect on their ecosystems. Researchers at Johannes Gutenberg University Mainz (JGU) investigated the role of different ant species in various ecosystem processes in tropical rain forests. They discovered that the dominant role is often played by only a few or even a single ant species when it comes to consuming food resources, something that can make an ecosystem vulnerable. Researchers working with Dr. Florian Menzel of the JGU Institute of Zoology have identified ant species in the forests of Borneo that are extremely efficient and exploit the major proportion of the food resources available. This is the first time that biologists quantified resource consumption by ants in the field and differentiated between diurnal and nocturnal ant communities.

The stability of an ecosystem depends on various factors, such as whether and how fast a system can return to its original state after disturbance. The capacity of an ecosystem to cope with the loss of species also contributes to its stability. How is affected by anthropogenic loss of biodiversity has been extensively studied in the past years. Generally, a high biodiversity leads to a high stability of the ecosystem. However, how tight this relation is and which other factors influence it often remains unknown.

The Mainz-based biologists conducted their research in two forests each in French Guiana (South America) and in Borneo (Southeast Asia). They set up 64 collection points in each forest where they provided natural sources, which included living insects of various sizes, dead insects, sugars that occur in sweet fruit and nectar as well as sugars that occur in honeydew produced by aphids. "We analyzed which ant species went to which food types and then measured the extent to which each species contributed to its consumption," explained Menzel. "This enabled us to calculate the stability of the system."

Two ant species Crematogaster levior (left) and Ectatomma tuberculatum (right) tending plant-sucking cicada larvae (French Guiana). Credit: ©: Florian Menzel

Diversity and stability are often lower at night

The tropics harbor an enormous biodiversity, often with more than 100 ant species in just one hectare of forest. Some are only active during the day, others only at night. Whether a species is diurnal, nocturnal, or both can have considerable influence on the stability of an ecosystem. If certain species are only active during the day and others only at night, this increases the overall stability of the ecosystem.

The researchers of Mainz University discovered that, in some forests, species richness and stability are significantly lower at night compared to daytime. They also showed that very high food turnover was only achieved when 'high-performance ants' were present, but not when many less efficient species equally contributed to food consumption. In Borneo, the most active in the study areas accounted for more than half of the overall food consumption. "These highly efficient species can dominate the entire system in some forests. They increase temporary resource turnover, but make the system more vulnerable because other species cannot compensate their performance if their numbers diminish," Menzel added. This finding is particularly important because ants play a major role in many . For example, they help to break down dead animal biomass, consume seeds, and prey on other insects.

Fungus-growing ants of the genus Cyphomyrmex retrieve flower petals to serve as a substrate for their fungus (French Guiana). Credit: ©: Florian Menzel

In the future, the JGU-based evolutionary biologists plan to further study this phenomenon to find out what exactly makes these efficient species so efficient. The responsible factors may be higher food specialization, the ability to quickly discover food, or morphological aspects. Whatever the causes, it has now become apparent that it is essential to bear in mind that ecosystem processes differ between day and night, such that it is necessary to investigate the of an ecosystem at multiple times of day.

Explore further: Trap-jaw ants exhibit previously unseen jumping behavior

More information: Mickal Yann Houadria et al. The relation between circadian asynchrony, functional redundancy and trophic performance in tropical ant communities, Ecology (2015). DOI: 10.1890/14-2466.1

Related Stories

Trap-jaw ants exhibit previously unseen jumping behavior

December 1, 2015

A species of trap-jaw ant has been found to exhibit a previously unseen jumping behavior, using its legs rather than its powerful jaws. The discovery makes this species, Odontomachus rixosus, the only species of ant that ...

Biodiversity enhances carbon storage of tropical forests

December 2, 2015

Tropical forests store 25% of the global carbon and harbour 96% of the world's tree species. But it was not clear whether this high biodiversity really matters for high carbon storage. Now, researchers of the ROBIN project ...

Tramp ant caught globetrotting under false name

December 14, 2015

A century-old mystery surrounding the origin of an invasive ant species was recently solved by an international team of scientists. Since 1893, when it was first discovered as an invasive species in the Canary Islands, entomologists ...

Recommended for you

Study shows how giraffe assassin bugs outwit spider prey

October 26, 2016

(—A biologist at Macquarie University in Australia has discovered the secret behind the giraffe assassin's ability to catch and kill spiders in their webs. In his paper published on the open access site Royal Society ...

New analysis of big data sheds light on cell functions

October 26, 2016

Researchers have developed a new way of obtaining useful information from big data in biology to better understand—and predict—what goes on inside a cell. Using genome-scale models, researchers were able to integrate ...

Structure of key DNA replication protein solved

October 25, 2016

A research team led by scientists at the Icahn School of Medicine at Mount Sinai (ISMMS) has solved the three-dimensional structure of a key protein that helps damaged cellular DNA repair itself. Investigators say that knowing ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.