Swimming devices could deliver drugs inside the body

December 2, 2015

Engineers at the University of Sheffield have discovered that tiny spherical bead-like devices can be guided by physical structures while swimming inside fluids. This opens up a wealth of future possibilities, such as using structures in the body to guide drug delivery, or cracks in rocks to direct environmental clean-up and exploration.

These devices, which are a similar size to cells and bacteria—around a hundredth of the average diameter of a strand of human hair—could be used to deliver drugs to a specific location inside the body or outside of the body to diagnose diseases in blood samples. Examples include finding proteins indicating cardiac problems or looking for circulating that can indicate the spread of cancer.

When working with devices on a micron scale, it's very challenging to produce motion from moving parts due to the properties of the fluid—it's similar to humans trying to run through treacle. Previous research has focused on using to guide the devices, but this requires constant observation so that the device can be guided manually.

The research conducted at Sheffield uses a new method, giving the devices a catalytic coating on one side, which creates a chemical reaction when fuel molecules are added, causing the device to move automatically on a pre-determined route, using natural structures as a guide.

Dr Stephen Ebbens, Department of Chemical and Biological Engineering at Sheffield, said: "When you're dealing with objects on such a small scale, we found that although our method of moving the devices using a coating and chemical reaction worked very effectively, it was difficult to control its direction, due to other molecules in the fluid jostling it.

"We've been working on ways to overcome this and control the movement of the devices along a path using physical structures to direct them.

"We are now working on applications for using these devices in the body, in the shorter term focusing on using them for medical diagnosis"

In addition to medical applications, these devices could be used in other fields, such as to locate indicators of contamination in environmental samples or to deliver neutralising chemicals to areas affected by oil spills, by using crevices in rocks as the structural guide.

'Boundaries can Steer Active Janus Spheres' by Sambeeta Das, Astha Garg, Andrew I. Campbell, Jonathan Howse, Ayusman Sen, Darrell Velegol, Ramin Golestanian, and Stephen J. Ebbens is published in Nature Communications on 2nd December.

Explore further: Primordial goo used to improve implants

More information: Nature Communications , dx.doi.org/10.1038/NCOMMS9999

Related Stories

Primordial goo used to improve implants

November 16, 2015

Australia's national science research organisation, CSIRO, has developed an innovative new coating that could be used to improve medical devices and implants, thanks to a "goo" thought to be have been home to the building ...

DNA-based nanodevices for molecular medicine

September 24, 2015

Researchers from Aalto University have published an article in the recent Trends in Biotechnology journal. The article discusses how DNA molecules can be assembled into tailored and complex nanostructures, and further, how ...

Recommended for you

Samsung to disable Note 7 phones in recall effort

December 9, 2016

Samsung announced Friday it would disable its Galaxy Note 7 smartphones in the US market to force remaining owners to stop using the devices, which were recalled for safety reasons.

Swiss unveil stratospheric solar plane

December 7, 2016

Just months after two Swiss pilots completed a historic round-the-world trip in a Sun-powered plane, another Swiss adventurer on Wednesday unveiled a solar plane aimed at reaching the stratosphere.

Solar panels repay their energy 'debt': study

December 6, 2016

The climate-friendly electricity generated by solar panels in the past 40 years has all but cancelled out the polluting energy used to produce them, a study said Tuesday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.