Scientists create revolutionary material to clean oil spills

November 30, 2015
Researchers from Deakin and Drexel develop super-absorbent material to soak up oil spills
Freestanding boron nitride membrane. Credit: Deakin University

Deakin University scientists have manufactured a revolutionary material that can clean up oil spills, which could save the earth from potential future disasters such as any repeat of the 2010 Gulf Coast BP disaster that wreaked environmental havoc and cost a reported $40 billion.

The major breakthrough material, which literally absorbs the oil like a sponge, is the result of support from the Australian Research Council and is now ready to be trialled by industry after two years of refinement in the laboratory at Deakin's Institute for Frontier Materials (IFM).

Alfred Deakin Professor Ying (Ian) Chen, the lead author on a paper which outlines the team's breakthrough in today's edition of Nature Communications, said the material was the most exciting advancement in oil spill clean-up technology in decades.

"Oil spills are a global problem and wreak havoc on our aquatic ecosystems, not to mention cost billions of dollars in damage," Professor Chen said.

"Everyone remembers the Gulf Coast disaster, but here in Australia they are a regular problem, and not just in our waters. Oil spills from trucks and other vehicles can close freeways for an entire day, again amounting to large economic losses.

"But current methods of cleaning up are inefficient and unsophisticated, taking too long, causing ongoing and expensive damage, which is why the development of our technology was supported by the Australian Research Council.

"We are so excited to have finally got to this stage after two years of trying to work out how to turn what we knew was a good material into something that could be practically used," Professor Chen said.

"In 2013 we developed the first stage of the material, but it was simply a powder. This powder had absorption capabilities, but you cannot simply throw powder onto oil – you need to be able to bind that powder into a sponge so that we can soak the oil up, and also separate it from water."

The lead author on the paper, IFM scientist Dr Weiwei Lei,) an Australian Research Council Discovery Early Career Research Awardee, said turning the powder into a sponge was a big challenge.

"But we have finally done it by developing a new production technique," Dr Lei said.

"The ground-breaking material is called a nanosheet, which is made up of flakes which are just several nanometers (one billionth of a meter) in thickness with tiny holes which can increase its surface area per gram to effectively the size of 5.5 tennis courts."

Researchers from Deakin and Drexel develop super-absorbent material to soak up oil spills
Boron nitride nanosheet next to spike of a plant. Credit: Deakin University

The research team, which included scientists from Drexel University, Philadelphia, and Missouri University of Science and Technology, started with boron nitride powder known as "white graphite" and broke it into atomically thin sheets that were used to make a sponge.

"The pores in the nanosheets provide the surface area to absorb oils and organic solvents up to 33 times its own weight," Dr Lei said.

Professor Yury Gogotsi from Drexel University said boron nitride nanosheets did not burn, could withstand flame, and be used in flexible and transparent electrical and heat insulation, as well as many other applications.

"We are delighted that support from the Australian Research Council allowed us to participate in this interesting study and we could help our IFM colleagues to model and better understand this wonderful material, " Professor Gogotsi said.

Professor Vadym Mochalin from Missouri University of Science and Technology said the mechanochemical technique developed meant it was possible to produce high-concentration stable aqueous colloidal solutions of boron nitride sheets, which could then be transformed into the ultralight porous aerogels and membranes for oil clean-up.

"The use of computational modelling helped us to understand the intimate details of this novel mechanochemical exfoliation process. It is a nice illustration of the power, which combined experimental plus modelling approach offers researchers nowadays."

Explore further: A complete solution for oil-spill cleanup

Related Stories

A complete solution for oil-spill cleanup

October 3, 2012

Scientists are describing what may be a "complete solution" to cleaning up oil spills—a superabsorbent material that sops up 40 times its own weight in oil and then can be shipped to an oil refinery and processed to recover ...

New material to soak up oil spills?

April 30, 2013

Scientists said Tuesday they had manufactured a lightweight and reusable material that can absorb up to 33 times its weight in certain chemicals—a possible new tool against water pollution.

Flexible dielectric polymer can stand the heat

August 28, 2015

Easily manufactured, low cost, lightweight, flexible dielectric polymers that can operate at high temperatures may be the solution to energy storage and power conversion in electric vehicles and other high temperature applications, ...

Cleaning water one stroke at a time

October 13, 2015

A material created by University of California, Riverside engineers is the key component of a swimsuit that won an international design competition for its ability to clean water as a person swims.

Shedding light on oil behaviors before the next spill

November 25, 2015

A comprehensive scientific report released today by The Royal Society of Canada (RSC) has concluded that there are still critical research gaps hampering efforts to both assess the environmental impacts of crude oil spills ...

Recommended for you

Tough new hydrogel hybrid doesn't dry out

June 27, 2016

If you leave a cube of Jell-O on the kitchen counter, eventually its water will evaporate, leaving behind a shrunken, hardened mass—hardly an appetizing confection. The same is true for hydrogels. Made mostly of water, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.