Team presents induction-powered biosensor chips detecting many molecules in vivo

May 26, 2015
This biosensing chip has been created by researchers in EPFL's Integrated Systems Laboratory. Credit: Alain Herzog / EPFL

It's only a centimeter long, it's placed under your skin, it's powered by a patch on the surface of your skin and it communicates with your mobile phone. The new biosensor chip developed at EPFL is capable of simultaneously monitoring the concentration of a number of molecules, such as glucose and cholesterol, and certain drugs.

The future of medicine lies in ever greater precision, not only when it comes to diagnosis but also drug dosage. The blood work that medical staff rely on is generally a snapshot indicative of the moment the blood is drawn before it undergoes hours - or even days - of analysis.

Several EPFL laboratories are working on devices allowing constant analysis over as long a period as possible. The latest development is the biosensor , created by researchers in the Integrated Systems Laboratory working together with the Radio Frequency Integrated Circuit Group. Sandro Carrara is unveiling it today at the International Symposium on Circuits and Systems (ISCAS) in Lisbon.

Autonomous operation

"This is the world's first chip capable of measuring not just pH and temperature, but also metabolism-related molecules like glucose, lactate and cholesterol, as well as drugs," said Dr Carrara. A group of electrochemical sensors works with or without enzymes, which means the device can react to a wide range of compounds, and it can do so for several days or even weeks.

This one-centimetre square device contains three main components: a circuit with six sensors, a control unit that analyses incoming signals, and a radio transmission module. It also has an induction coil that draws power from an external battery attached to the skin by a patch. "A simple plaster holds together the battery, the coil and a Bluetooth module used to send the results immediately to a ," said Dr Carrara.

This biosensing chip has been created by researchers in EPFL's Integrated Systems Laboratory. Credit: Alain Herzog / EPFL

Contactless, in vivo monitoring

The chip was successfully tested in vivo on mice at the Institute for Research in Biomedicine (IRB) in Bellinzona, where researchers were able to constantly monitor glucose and paracetamol levels without a wire tracker getting in the way of the animals' daily activities. The results were extremely promising, which means that clinical tests on humans could take place in three to five years - especially since the procedure is only minimally invasive, with the chip being implanted just under the epidermis.

"Knowing the precise and real-time effect of drugs on the metabolism is one of the keys to the type of personalised, precision medicine that we are striving for," said Dr Carrara.

Explore further: Scientists have developed a tiny, portable personal blood testing laboratory that sends data through mobile phone

Related Stories

Measuring glucose without needle pricks

September 4, 2012

Pricking a finger everyday is just part of everyday life for many diabetes patients. A non-invasive measurement approach could release them from the constant pain of pin pricks. The linchpin is a biosensor engineered by Fraunhofer ...

A nano-transistor assesses your health via sweat

May 15, 2015

Made from state-of-the-art silicon transistors, an ultra-low power sensor enables real-time scanning of the contents of liquids such as perspiration. Compatible with advanced electronics, this technology boasts exceptional ...

Light replaces the needle

January 21, 2015

One in twelve children are born prematurely in Switzerland. If hypoglycemia develops in these premature babies and persists for over an hour, it can affect brain development. In order to prevent this, the babies' blood sugar ...

Novel sensors to detect molecules for medicine and agrifood

November 27, 2012

(Phys.org)—Agribusiness and medicine are constantly seeking more efficient methods for detecting biomolecules. To meet this need, a novel concept of miniaturized sensors has been developed by researchers from LAAS-CNRS ...

Modeling the brain's energy

March 25, 2015

Scientists at EPFL, KAUST and UCL have created the first computer model of the metabolic coupling between neuron and glia, an essential feature of brain function. Confirming previous experimental data, the model is now being ...

Recommended for you

Swiss unveil stratospheric solar plane

December 7, 2016

Just months after two Swiss pilots completed a historic round-the-world trip in a Sun-powered plane, another Swiss adventurer on Wednesday unveiled a solar plane aimed at reaching the stratosphere.

Solar panels repay their energy 'debt': study

December 6, 2016

The climate-friendly electricity generated by solar panels in the past 40 years has all but cancelled out the polluting energy used to produce them, a study said Tuesday.

Wall-jumping robot is most vertically agile ever built

December 6, 2016

Roboticists at UC Berkeley have designed a small robot that can leap into the air and then spring off a wall, or perform multiple vertical jumps in a row, resulting in the highest robotic vertical jumping agility ever recorded. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.